Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 154: 482-491, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29890144

RESUMO

LLC-PK1 cells, an immortalized epithelial cell line derived from pig renal proximal tubules, express all the major players of the endocannabinoid system (ECS) such as CB1, CB2 and TRPV1 receptors, as well as the main enzymes involved in the biosynthesis and degradation of the major endocannabinoids named 2-arachidonoylglycerol, 2-AG and anandamide, AEA. Here we investigated whether the damages caused by ischemic insults either in vitro using LLC-PK1 cells exposed to antimycin A (an inductor of ATP-depletion) or in vivo using Wistar rats in a classic renal ischemia and reperfusion (IR) protocol, lead to changes in AEA and 2-AG levels, as well as altered expression of genes from the main enzymes involved in the regulation of the ECS. Our data show that the mRNA levels of the CB1 receptor gene were downregulated, while the transcript levels of monoacylglycerol lipase (MAGL), the main 2-AG degradative enzyme, were upregulated in LLC-PK1 cells after IR model. Accordingly, IR was accompanied by a significant reduction in the levels of 2-AG and AEA, as well as of the two endocannabinoid related molecules, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in LLC-PK1 cells. In kidney cortex homogenates, only AEA levels were significantly decreased. In addition, we found that in both the in vitro and in vivo model IR caused a reduction in the expression and activity of the Na+/K+ ATPase. These changes were reversed by the CB1/CB2 agonist WIN55,212, in a CB1-receptor dependent manner in the LLC-PK1 IR model. In conclusion, the ECS and Na+/K+ ATPase are down-regulated following IR in LLC-PK1 cells and rat kidney. We suggest that CB1 agonists might represent a potential strategy to reverse the consequences of IR injury in kidney tissues.


Assuntos
Endocanabinoides/metabolismo , Túbulos Renais Proximais/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/fisiologia , ATPase Trocadora de Sódio-Potássio/biossíntese , Animais , Benzoxazinas/farmacologia , Benzoxazinas/uso terapêutico , Endocanabinoides/agonistas , Túbulos Renais Proximais/efeitos dos fármacos , Células LLC-PK1 , Masculino , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Naftalenos/farmacologia , Naftalenos/uso terapêutico , Ratos , Ratos Wistar , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Suínos
2.
Lipids Health Dis ; 16(1): 245, 2017 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-29246161

RESUMO

BACKGROUND: Undernutrition during childhood leads to chronic diseases in adult life including hypertension, diabetes and chronic kidney disease. Here we explore the hypothesis that physiological alterations in the bioactive lipids pattern within kidney tissue might be involved in the progression of chronic kidney disease. METHODS: Membrane fractions from kidney homogenates of undernourished rats (RBD) were submitted to lipid extraction and analysis by thin layer chromatography and cholesterol determination. RESULTS: Kidneys from RBD rats had 25% lower cholesterol content, which disturb membrane microdomains, affecting Ca2+ homeostasis and the enzymes responsible for important lipid mediators such as phosphatidylinositol-4 kinase, sphingosine kinase, diacylglicerol kinase and phospholipase A2. We observed a decrease in phosphatidylinositol(4)-phosphate (8.8 ± 0.9 vs. 3.6 ± 0.7 pmol.mg-1.mim-1), and an increase in phosphatidic acid (2.2 ± 0.8 vs. 3.8 ± 1.3 pmol.mg-1.mim-1), being these lipid mediators involved in the regulation of key renal functions. Ceramide levels are augmented in kidney tissue from RBD rats (18.7 ± 1.4 vs. 21.7 ± 1.5 fmol.mg-1.min-1) indicating an ongoing renal lesion. CONCLUSION: Results point to an imbalance in the bioactive lipid generation with further consequences to key events related to kidney function, thus contributing to the establishment of chronic kidney disease.


Assuntos
Colesterol/metabolismo , Hipertensão/metabolismo , Rim/metabolismo , Desnutrição/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Insuficiência Renal Crônica/metabolismo , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Animais , Animais Recém-Nascidos , Ceramidas/metabolismo , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Regulação da Expressão Gênica , Hipertensão/etiologia , Hipertensão/genética , Hipertensão/patologia , Rim/química , Metabolismo dos Lipídeos , Masculino , Desnutrição/complicações , Desnutrição/genética , Desnutrição/patologia , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosfolipases A2/genética , Fosfolipases A2/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ratos , Ratos Wistar , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia
3.
PLoS One ; 9(7): e100410, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24983243

RESUMO

BACKGROUND: Several studies have correlated protein restriction associated with other nutritional deficiencies with the development of cardiovascular and renal diseases. The driving hypothesis for this study was that Ang II signaling pathways in the heart and kidney are affected by chronic protein, mineral and vitamin restriction. METHODOLOGY/PRINCIPAL FINDINGS: Wistar rats aged 90 days were fed from weaning with either a control or a deficient diet that mimics those used in impoverished regions worldwide. Such restriction simultaneously increased ouabain-insensitive Na+-ATPase and decreased (Na++K+)ATPase activity in the same proportion in cardiomyocytes and proximal tubule cells. Type 1 angiotensin II receptor (AT1R) was downregulated by that restriction in both organs, whereas AT2R decreased only in the kidney. The PKC/PKA ratio increased in both tissues and returned to normal values in rats receiving Losartan daily from weaning. Inhibition of the MAPK pathway restored Na+-ATPase activity in both organs. The undernourished rats presented expanded plasma volume, increased heart rate, cardiac hypertrophy, and elevated systolic pressure, which also returned to control levels with Losartan. Such restriction led to electrical cardiac remodeling represented by prolonged ventricular repolarization parameters, induced triggered activity, early after-depolarization and delayed after-depolarization, which were also prevented by Losartan. CONCLUSION/SIGNIFICANCE: The mechanisms responsible for these alterations are underpinned by an imbalance in the PKC- and PKA-mediated pathways, with participation of angiotensin receptors and by activation of the MAPK/ERK1/2 pathway. These cellular and molecular alterations culminate in cardiac electric remodeling and in the onset of hypertension in adulthood.


Assuntos
Sistema de Sinalização das MAP Quinases , Desnutrição/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Adenosina Trifosfatases/metabolismo , Angiotensina II , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Pressão Sanguínea , Cardiomegalia/patologia , Proteínas de Transporte de Cátions/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Coração/fisiopatologia , Frequência Cardíaca , Túbulos Renais Proximais/metabolismo , Losartan/farmacologia , Masculino , Miócitos Cardíacos/metabolismo , Volume Plasmático , Proteína Quinase C/metabolismo , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/metabolismo
4.
Eur J Nutr ; 52(3): 1233-42, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22890505

RESUMO

PURPOSE: It has been demonstrated that reabsorption of Na⁺ in the thick ascending limb is reduced and the ability to concentrate urine can be compromised in undernourished individuals. Alterations in phospholipid and cholesterol content in renal membranes, leading to Na⁺ loss and the inability to concentrate urine, were investigated in undernourished rats. METHODS: Sixty-day-old male Wistar rats were utilized to evaluate (1) phospholipid and cholesterol content in the membrane fraction of whole kidneys, (2) cholesterol content and the levels of active Na⁺ transporters, (Na⁺ + K⁺)ATPase and Na⁺-ATPase, in basolateral membranes of kidney proximal tubules, and (3) functional indicators of medullary urine concentration. RESULTS: Body weight in the undernourished group was 73 % lower than in control. Undernourishment did not affect the levels of cholesterol in serum or in renal homogenates. However, membranes of whole kidneys revealed 56 and 66 % reduction in the levels of total phospholipids and cholesterol, respectively. Furthermore, cholesterol and (Na⁺ + K⁺)ATPase activity in proximal tubule membranes were reduced by 55 and 68 %, respectively. Oxidative stress remained unaltered in the kidneys of undernourished rats. In contrast, Na⁺-ATPase activity, an enzyme with all regulatory components in membrane, was increased in the proximal tubules of undernourished rats. Free water clearance and fractional Na⁺ excretion were increased by 86 and 24 %, respectively, and urinary osmolal concentration was 21 % lower in undernourished rats than controls. CONCLUSION: Life-long undernutrition reduces the levels of total phospholipids and cholesterol in membranes of renal tubular cells. This alteration in membrane integrity could diminish (Na⁺ + K⁺)ATPase activity resulting in reduced Na⁺ reabsorption and urinary concentrating ability.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Regulação para Baixo , Capacidade de Concentração Renal , Desnutrição/metabolismo , Insuficiência Renal/etiologia , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/enzimologia , Feminino , Rim/citologia , Rim/enzimologia , Rim/metabolismo , Rim/fisiopatologia , Túbulos Renais Proximais/enzimologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/fisiopatologia , Lactação , Masculino , Desnutrição/congênito , Desnutrição/fisiopatologia , Desnutrição/urina , Fenômenos Fisiológicos da Nutrição Materna , Fosfolipídeos/metabolismo , Gravidez , Ratos , Ratos Wistar , Sódio/urina , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA