Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Biotechnol J ; 19(7): e2400068, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987218

RESUMO

SH-SY5Y is a human neuroblastoma cell line that can be differentiated into several neuronal phenotypes, depending on culture conditions. For this reason, this cell line has been widely used as an in vitro model of neurodegenerative conditions, such as Parkinson's disease (PD). However, most studies published to date used fetal bovine serum (FBS) as culture medium supplement for SH-SY5Y cell differentiation. We report on the testing of human platelet lysate (hPL) as a culture medium supplement to support SH-SY5Y cell culture. Both standard hPL and a fibrinogen-depleted hPL (FD-hPL) formulation, which does not require the addition of anticoagulants to culture media, promoted an increase in SH-SY5Y cell proliferation in comparison to FBS, without compromising metabolic activity. SH-SY5Y cells cultured in hPL or FD-hPL also displayed a higher number of neurite extensions and stained positive for MAP2 and synaptophysin, in the absence of differentiation stimuli; reducing hPL or FD-hPL concentration to 1% v/v did not affect cell proliferation or metabolic activity. Furthermore, following treatment with retinoic acid (RA) and further stimulation with brain-derived neurotrophic factor (BDNF) and nerve growth factor beta (NGF-ß), the percentage of SH-SY5Y cells stained positive for dopaminergic neuronal differentiation markers (tyrosine hydroxylase [TH] and Dopamine Transporter [DAT]) was higher in hPL or FD-hPL than in FBS, and gene expression of dopaminergic markers TH, DAT, and DR2 was also detected. Overall, the data herein presented supports the use of hPL to differentiate SH-SY5Y cells into a neuronal phenotype with dopaminergic features, and the adoption of FD-hPL as a fully xenogeneic free alternative to FBS to support the use of SH-SY5Y cells as a neurodegeneration model.


Assuntos
Plaquetas , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Neurônios Dopaminérgicos , Neuroblastoma , Humanos , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Linhagem Celular Tumoral , Plaquetas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/citologia , Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Meios de Cultura/farmacologia , Tretinoína/farmacologia , Fenótipo
2.
Cells ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38667269

RESUMO

Fabry Disease (FD) is one of the most prevalent lysosomal storage disorders, resulting from mutations in the GLA gene located on the X chromosome. This genetic mutation triggers glo-botriaosylceramide (Gb-3) buildup within lysosomes, ultimately impairing cellular functions. Given the role of lysosomes in immune cell physiology, FD has been suggested to have a profound impact on immunological responses. During the past years, research has been focusing on this topic, and pooled evidence strengthens the hypothesis that Gb-3 accumulation potentiates the production of pro-inflammatory mediators, revealing the existence of an acute inflammatory process in FD that possibly develops to a chronic state due to stimulus persistency. In parallel, extracellular vesicles (EVs) have gained attention due to their function as intercellular communicators. Considering EVs' capacity to convey cargo from parent to distant cells, they emerge as potential inflammatory intermediaries capable of transporting cytokines and other immunomodulatory molecules. In this review, we revisit the evidence underlying the association between FD and altered immune responses and explore the potential of EVs to function as inflammatory vehicles.


Assuntos
Exossomos , Doença de Fabry , Inflamação , Doença de Fabry/genética , Doença de Fabry/metabolismo , Doença de Fabry/patologia , Humanos , Inflamação/patologia , Exossomos/metabolismo , Animais , Vesículas Extracelulares/metabolismo
3.
Analyst ; 149(10): 2812-2825, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38644740

RESUMO

Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and associated with poor prognosis. Unfortunately, most of the patients that achieve clinical complete remission after the treatment will ultimately relapse due to the persistence of minimal residual disease (MRD), that is not measurable using conventional technologies in the clinic. Microfluidics is a potential tool to improve the diagnosis by providing early detection of MRD. Herein, different designs of microfluidic devices were developed to promote lateral and vertical mixing of cells in microchannels to increase the contact area of the cells of interest with the inner surface of the device. Possible interactions between the cells and the surface were studied using fluid simulations. For the isolation of leukemic blasts, a positive selection strategy was used, targeting the cells of interest using a panel of specific biomarkers expressed in immature and aberrant blasts. Finally, once the optimisation was complete, the best conditions were used to process patient samples for downstream analysis and benchmarking, including phenotypic and genetic characterisation. The potential of these microfluidic devices to isolate and detect AML blasts may be exploited for the monitoring of AML patients at different stages of the disease.


Assuntos
Separação Celular , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/sangue , Separação Celular/métodos , Separação Celular/instrumentação , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentação
4.
Cytotherapy ; 26(7): 700-713, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38483360

RESUMO

BACKGROUND AIMS: Parkinson's disease (PD) is the second most common neurodegenerative disorder. The etiology of the disease remains largely unknown, but evidence have suggested that the overexpression and aggregation of alpha-synuclein (α-syn) play key roles in the pathogenesis and progression of PD. Mesenchymal stromal cells (MSCs) have been earning attention in this field, mainly due to their paracrine capacity. The bioactive molecules secreted by MSCs, i.e. their secretome, have been associated with enhanced neuronal survival as well as a strong modulatory capacity of the microenvironments where the disease develops. The selection of the appropriate animal model is crucial in studies of efficacy assessment. Given the involvement of α-syn in the pathogenesis of PD, the evidence generated from the use of animal models that develop a pathologic phenotype due to the action of this protein is extremely valuable. Therefore, in this work, we established an animal model based on the viral vector-mediated overexpression of A53T α-syn and studied the impact of the secretome of bone marrow mesenchymal stromal cells MSC(M) as a therapeutic strategy. METHODS: Adult male rats were subjected to α-syn over expression in the nigrostriatal pathway to model dopaminergic neurodegeneration. The impact of locally administered secretome treatment from MSC(M) was studied. Motor impairments were assessed throughout the study coupled with whole-region (striatum and substantia nigra) confocal microscopy evaluation of histopathological changes associated with dopaminergic neurodegeneration and glial cell reactivity. RESULTS: Ten weeks after lesion induction, the animals received secretome injections in the substantia nigra pars compacta (SNpc) and striatum (STR). The secretome used was produced from bone marrow mesenchymal stromal cells MSC(M) expanded in a spinner flask (SP) system. Nine weeks later, animals that received the viral vector containing the gene for A53T α-syn and treated with vehicle (Neurobasal-A medium) presented dopaminergic cell loss in the SNpc and denervation in the STR. The treatment with secretome significantly reduced the levels of α-syn in the SNpc and protected the dopaminergic neurons (DAn) within the SNpc and STR. CONCLUSIONS: Our results are aligned with previous studies in both α-syn Caenorhabditis elegans models, as well as 6-OHDA rodent model, revealing that secretome exerted a neuroprotective effect. Moreover, these effects were associated with a modulation of microglial reactivity supporting an immunomodulatory role for the factors contained within the secretome. This further supports the development of new studies exploring the effects and the mechanism of action of secretome from MSC(M) against α-syn-induced neurotoxicity.


Assuntos
Modelos Animais de Doenças , Células-Tronco Mesenquimais , Microglia , Neuroproteção , Doença de Parkinson , alfa-Sinucleína , Animais , Células-Tronco Mesenquimais/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Ratos , Masculino , Microglia/metabolismo , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Secretoma/metabolismo , Neurônios Dopaminérgicos/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células Cultivadas , Humanos
5.
Pharmaceutics ; 15(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38140029

RESUMO

The Warburg Effect is characterized by high rates of glucose uptake and lactate production. Monocarboxylate transporters (MCTs) are crucial to avoid cellular acidosis by internal lactate accumulation, being largely overexpressed by cancer cells and associated with cancer aggressiveness. The MCT1-specific inhibitor AZD3965 has shown encouraging results in different cancer models. However, it has not been tested in urothelial bladder cancer (UBC), a neoplasm where rates of recurrence, progression and platinum-based resistance are generally elevated. We used two muscle-invasive UBC cell lines to study AZD3965 activity regarding lactate production, UBC cells' viability and proliferation, cell cycle profile, and migration and invasion properties. An "in vivo" assay with the chick chorioallantoic membrane model was additionally performed, as well as the combination of the compound with cisplatin. AZD3965 demonstrated anticancer activity upon low levels of MCT4, while a general lack of sensitivity was observed under MCT4 high expression. Cell viability, proliferation and migration were reduced, cell cycle was arrested, and tumor growth "in vivo" was inhibited. The compound sensitized these MCT4-low-expressing cells to cisplatin. Thus, AZD3965 seems to display anticancer properties in UBC under a low MCT4-expression setting, but additional studies are necessary to confirm AZD3965 activity in this cancer model.

6.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239846

RESUMO

Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 × 10-9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10-4-5.79 × 10-14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10-4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10-4) and circulating serum concentrations of Monocyte Chemoattractant Protein (MCP)-2 (p = 3.6 × 10-4). We also found that the CD46rs1142469 SNP correlated with numbers of CD19+ B cells, CD19+CD3- B cells, CD5+IgD- cells, IgM- cells, IgD-IgM- cells, and CD4-CD8- PBMCs (p = 4.9 × 10-4-8.6 × 10-4) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27- cells (p = 9.3 × 10-4). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3-, MCP-2-, and IL20-dependent pathways.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Leucócitos Mononucleares/patologia , Biomarcadores , Imunoglobulina M , Autofagia
7.
Cancers (Basel) ; 15(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36900154

RESUMO

Acute myeloid leukemia (AML) comprises a group of hematologic neoplasms characterized by abnormal differentiation and proliferation of myeloid progenitor cells. AML is associated with poor outcome due to the lack of efficient therapies and early diagnostic tools. The current gold standard diagnostic tools are based on bone marrow biopsy. These biopsies, apart from being very invasive, painful, and costly, have low sensitivity. Despite the progress uncovering the molecular pathogenesis of AML, the development of novel detection strategies is still poorly explored. This is particularly important for patients that check the criteria for complete remission after treatment, since they can relapse through the persistence of some leukemic stem cells. This condition, recently named as measurable residual disease (MRD), has severe consequences for disease progression. Hence, an early and accurate diagnosis of MRD would allow an appropriate therapy to be tailored, improving a patient's prognosis. Many novel techniques with high potential in disease prevention and early detection are being explored. Among them, microfluidics has flourished in recent years due to its ability at processing complex samples as well as its demonstrated capacity to isolate rare cells from biological fluids. In parallel, surface-enhanced Raman scattering (SERS) spectroscopy has shown outstanding sensitivity and capability for multiplex quantitative detection of disease biomarkers. Together, these technologies can allow early and cost-effective disease detection as well as contribute to monitoring the efficiency of treatments. In this review, we aim to provide a comprehensive overview of AML disease, the conventional techniques currently used for its diagnosis, classification (recently updated in September 2022), and treatment selection, and we also aim to present how novel technologies can be applied to improve the detection and monitoring of MRD.

8.
Cancers (Basel) ; 13(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809172

RESUMO

The role of genetic variation in autophagy-related genes in modulating autophagy and cancer is poorly understood. Here, we comprehensively investigated the association of autophagy-related variants with colorectal cancer (CRC) risk and provide new insights about the molecular mechanisms underlying the associations. After meta-analysis of the genome-wide association study (GWAS) data from four independent European cohorts (8006 CRC cases and 7070 controls), two loci, DAPK2 (p = 2.19 × 10-5) and ATG5 (p = 6.28 × 10-4) were associated with the risk of CRC. Mechanistically, the DAPK2rs11631973G allele was associated with IL1 ß levels after the stimulation of peripheral blood mononuclear cells (PBMCs) with Staphylococcus aureus (p = 0.002), CD24 + CD38 + CD27 + IgM + B cell levels in blood (p = 0.0038) and serum levels of en-RAGE (p = 0.0068). ATG5rs546456T allele was associated with TNF α and IL1 ß levels after the stimulation of PBMCs with LPS (p = 0.0088 and p = 0.0076, respectively), CD14+CD16- cell levels in blood (p = 0.0068) and serum levels of CCL19 and cortisol (p = 0.0052 and p = 0.0074, respectively). Interestingly, no association with autophagy flux was observed. These results suggested an effect of the DAPK2 and ATG5 loci in the pathogenesis of CRC, likely through the modulation of host immune responses.

9.
Cancers (Basel) ; 13(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809750

RESUMO

Acute myeloid leukemia (AML) is the most common acute leukemia, characterized by a heterogeneous genetic landscape contributing, among others, to the occurrence of metabolic reprogramming. Autophagy, a key player on metabolism, plays an essential role in AML. Here, we examined the association of three potentially functional genetic polymorphisms in the ATG10 gene, central for the autophagosome formation. We screened a multicenter cohort involving 309 AML patients and 356 healthy subjects for three ATG10 SNPs: rs1864182T>G, rs1864183C>T and rs3734114T>C. The functional consequences of the ATG10 SNPs in its canonical function were investigated in vitro using peripheral blood mononuclear cells from a cohort of 46 healthy individuals. Logistic regression analysis adjusted for age and gender revealed that patients carrying the ATG10rs1864182G allele showed a significantly decreased risk of developing AML (OR [odds ratio] = 0.58, p = 0.001), whereas patients carrying the homozygous ATG10rs3734114C allele had a significantly increased risk of developing AML (OR = 2.70, p = 0.004). Functional analysis showed that individuals carrying the ATG10rs1864182G allele had decreased autophagy when compared to homozygous major allele carriers. Our results uncover the potential of screening for ATG10 genetic variants in AML prevention strategies, in particular for subjects carrying other AML risk factors such as elderly individuals with clonal hematopoiesis of indeterminate potential.

10.
Bioorg Chem ; 100: 103942, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32450388

RESUMO

A selection of new chromeno[2,3-b]pyridines was prepared from chromenylacrylonitriles and N-substituted piperazines, using a novel and efficient synthetic procedure. The compounds were tested for their anticancer activity using breast cancer cell lines MCF-7, Hs578t and MDA-MB-231 and the non-neoplastic cell line MCF-10A for toxicity evaluation. In general, compounds showed higher activity towards the luminal breast cancer subtype (MCF-7), competitive with the reference compound Doxorubicin. The in vivo toxicity assay using C. elegans demonstrated a safe profile for the most active compounds. Chromene 3f revealed a promising drug profile, inhibiting cell growth and proliferation, inducing cell cycle arrest in G2/M phase, apoptosis and microtubule destabilization. The new compounds presented exciting bioactive features and may be used as lead compounds in cancer related drug discovery.


Assuntos
Antineoplásicos/química , Benzopiranos/química , Pirimidinas/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzopiranos/síntese química , Benzopiranos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Pirimidinas/síntese química , Pirimidinas/farmacologia , Relação Estrutura-Atividade
11.
Anticancer Drugs ; 31(5): 507-517, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31934887

RESUMO

Different types of tumors often present an overexpression of cyclooxygenase-2. The aim of this study was to evaluate the effects of parecoxib (NSAID, cyclooxygenase-2 selective inhibitor) in the behavior of the human osteosarcoma MG-63 cell line, concerning several biological features. Cells were exposed to several concentrations of parecoxib for 48 hours. Cell viability/proliferation, cyclooxygenase-2 expression, morphologic alterations, membrane integrity, cell cycle evaluation, cell death and genotoxicity were evaluated. When compared with untreated cells, parecoxib led to a marked decrease in cell viability/proliferation, in COX-2 expression and changes in cell morphology, in a concentration-dependent manner. Cell recuperation was observed after incubation with drug-free medium. Parecoxib exposure increased lactate dehydrogenase release, an arrest of the cell cycle at S-phase and G2/M-phase, as well as growth of the sub-G0/G1-fraction and increased DNA damage. Parecoxib led to a slight increase of necrosis regulated cell death in treated cells, and an increase of autophagic vacuoles, in a concentration-dependent manner. In this study, parecoxib showed antitumor effects in the MG-63 human osteosarcoma cells. The potential mechanism was inhibiting cell proliferation and promoting necrosis. These results further suggested that parecoxib might be a potential candidate for in-vivo studies.


Assuntos
Neoplasias Ósseas/patologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/química , Isoxazóis/farmacologia , Osteossarcoma/patologia , Apoptose , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/enzimologia , Ciclo Celular , Proliferação de Células , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/enzimologia , Células Tumorais Cultivadas
12.
Cells ; 8(9)2019 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-31450562

RESUMO

The cancer metabolic reprogramming allows the maintenance of tumor proliferation, expansion and survival by altering key bioenergetics, biosynthetic and redox functions to meet the higher demands of tumor cells. In addition, several metabolites are also needed to perform signaling functions that further promote tumor growth and progression. These metabolic alterations have been exploited in different cancers, including acute myeloid leukemia, as novel therapeutic strategies both in preclinical models and clinical trials. Here, we review the complexity of acute myeloid leukemia (AML) metabolism and discuss how therapies targeting different aspects of cellular metabolism have demonstrated efficacy and how they provide a therapeutic window that should be explored to target the metabolic requirements of AML cells.


Assuntos
Antineoplásicos/uso terapêutico , Metabolismo Energético/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Ensaios Clínicos como Assunto , Progressão da Doença , Humanos , Leucemia Mieloide Aguda/metabolismo , Transdução de Sinais
13.
Aging Cell ; 18(4): e12922, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30977294

RESUMO

α-Synuclein (aSyn) toxicity is associated with cell cycle alterations, activation of DNA damage responses (DDR), and deregulation of autophagy. However, the relationships between these phenomena remain largely unknown. Here, we demonstrate that in a yeast model of aSyn toxicity and aging, aSyn expression induces Ras2-dependent growth signaling, cell cycle re-entry, DDR activation, autophagy, and autophagic degradation of ribonucleotide reductase 1 (Rnr1), a protein required for the activity of ribonucleotide reductase and dNTP synthesis. These events lead to cell death and aging, which are abrogated by deleting RAS2, inhibiting DDR or autophagy, or overexpressing RNR1. aSyn expression in human H4 neuroglioma cells also induces cell cycle re-entry and S-phase arrest, autophagy, and degradation of RRM1, the human homologue of RNR1, and inhibiting autophagic degradation of RRM1 rescues cells from cell death. Our findings represent a model for aSyn toxicity that has important implications for understanding synucleinopathies and other age-related neurodegenerative diseases.


Assuntos
Autofagia/genética , Proteólise , Ribonucleotídeo Redutases/metabolismo , Fase S/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/metabolismo , Morte Celular/genética , Linhagem Celular Tumoral , Senescência Celular/genética , Dano ao DNA/genética , Vetores Genéticos , Glioma/patologia , Humanos , Doença de Parkinson/metabolismo , Transfecção , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidade
14.
Eur J Med Chem ; 157: 101-114, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30081238

RESUMO

Chalcone and chromene derivatives were synthesized in good yield through simple and effective reactions using innocuous solvents such as water and ethanol and high yielding aldol condensations. Generally, the reactions were performed at room temperature, leading to the isolation of highly pure compounds. These compounds were tested on breast cancer cells (MCF-7 and Hs578T) and breast non-neoplastic cells (MCF-10A). After determination of IC50 value, specific assays were performed to analyze the potential of these compounds, and those bearing halogenated substituents presented enhanced activity comparing to methoxyl or methyl groups. More specifically, the bromine atom was often present in the bioactive molecules that proceeded to the final assays and showed to be promising candidates for further studies. The selected chromene acted as a cell migration inhibitory agent and triggered regulated cell death associated with G2/M cell-arrest and microtubule destabilization. For chalcones, the results suggest an anti-proliferative activity. Also, results for combination-therapy potentiated the antitumor effect of doxorubicin and reduced cytotoxicity in MCF-10A cells.


Assuntos
Antineoplásicos/farmacologia , Benzopiranos/farmacologia , Chalconas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzopiranos/síntese química , Benzopiranos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Chalconas/síntese química , Chalconas/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
15.
J Cell Mol Med ; 22(10): 4807-4817, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30117681

RESUMO

Acute myeloid leukaemia (AML) comprises a heterogeneous group of hematologic neoplasms characterized by diverse combinations of genetic, phenotypic and clinical features representing a major challenge for the development of targeted therapies. Metabolic reprogramming, mainly driven by deregulation of the nutrient-sensing pathways as AMPK, mTOR and PI3K/AKT, has been associated with cancer cells, including AML cells, survival and proliferation. Nevertheless, the role of these metabolic adaptations on the AML pathogenesis is still controversial. In this work, the metabolic status and the respective metabolic networks operating in different AML cells (NB-4, HL-60 and KG-1) and their impact on autophagy and survival was characterized. Data show that whereas KG-1 cells exhibited preferential mitochondrial oxidative phosphorylation metabolism with constitutive co-activation of AMPK and mTORC1 associated with increased autophagy, NB-4 and HL-60 cells displayed a dependent glycolytic profile mainly associated with AKT/mTORC1 activation and low autophagy flux. Inhibition of AKT is disclosed as a promising therapeutical target in some scenarios while inhibition of AMPK and mTORC1 has no major impact on KG-1 cells' survival. The results highlight an exclusive metabolic profile for each tested AML cells and its impact on determination of the anti-leukaemia efficacy and on personalized combinatory therapy with conventional and targeted agents.


Assuntos
Autofagia/genética , Metabolismo Energético/genética , Leucemia Mieloide Aguda/metabolismo , Mitocôndrias/genética , Quinases Proteína-Quinases Ativadas por AMP , Glicólise/genética , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Metaboloma/genética , Mitocôndrias/metabolismo , Terapia de Alvo Molecular , Proteína Oncogênica v-akt/genética , Fosforilação Oxidativa , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Proteínas Quinases/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/genética
16.
Acta Biomater ; 55: 131-143, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28347862

RESUMO

Current vascularization strategies for Tissue Engineering constructs, in particular cell sheet-based, are limited by time-consuming and expensive endothelial cell isolation and/or by the complexity of using extrinsic growth factors. Herein, we propose an alternative strategy using angiogenic cell sheets (CS) obtained from the stromal vascular fraction (SVF) of adipose tissue that can be incorporated into more complex constructs. Cells from the SVF were cultured in normoxic and hypoxic conditions for up to 8days in the absence of extrinsic growth factors. Immunocytochemistry against CD31 and CD146 revealed spontaneous organization in capillary-like structures, more complex after hypoxic conditioning. Inhibition of HIF-1α pathway hindered capillary-like structure formation in SVF cells cultured in hypoxia, suggesting a role of HIF-1α. Moreover, hypoxic SVF cells showed a trend for increased secretion of angiogenic factors, which was reflected in increased network formation by endothelial cells cultured on matrigel using that conditioned medium. In vivo implantation of SVF CS in a mouse hind limb ischemia model revealed that hypoxia-conditioned CS led to improved restoration of blood flow. Both in vitro and in vivo data suggest that SVF CS can be used as simple and cost-efficient tools to promote functional vascularization of TE constructs. STATEMENT OF SIGNIFICANCE: Neovascularization after implantation is a major obstacle for producing clinically viable cell sheet-based tissue engineered constructs. Strategies using endothelial cells and extrinsic angiogenic growth factors are expensive and time consuming and may raise concerns of tumorigenicity. In this manuscript, we describe a simplified approach using angiogenic cell sheets fabricated from the stromal vascular fraction of adipose tissue. The strong angiogenic behavior of these cell sheets, achieved without the use of external growth factors, was further stimulated by low oxygen culture. When implanted in an in vivo model of hind limb ischemia, the angiogenic cell sheets contributed to blood flux recovery. These cell sheets can therefore be used as a straightforward tool to increase the neovascularization of cell sheet-based thick constructs.


Assuntos
Tecido Adiposo/metabolismo , Células Endoteliais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neovascularização Fisiológica , Engenharia Tecidual , Tecido Adiposo/citologia , Tecido Adiposo/transplante , Adulto , Animais , Hipóxia Celular , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/transplante , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos
17.
Oncotarget ; 6(31): 31428-40, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25537507

RESUMO

The therapeutic strategies against acute myeloid leukemia (AML) have hardly been modified over four decades. Although resulting in a favorable outcome in young patients, older individuals, the most affected population, do not respond adequately to therapy. Intriguingly, the mechanisms responsible for AML cells chemoresistance/susceptibility are still elusive. Mounting evidence has shed light on the relevance of proteolytic systems (autophagy and ubiquitin-proteasome system, UPS), as well as the AMPK pathway, in AML biology and treatment, but their exact role is still controversial. Herein, two AML cell lines (HL-60 and KG-1) were exposed to conventional chemotherapeutic agents (cytarabine and/or doxorubicin) to assess the relevance of autophagy and UPS on AML cells' response to antileukemia drugs. Our results clearly showed that the antileukemia agents target both proteolytic systems and the AMPK pathway. Doxorubicin enhanced UPS activity while drugs' combination blocked autophagy specifically on HL-60 cells. In contrast, KG-1 cells responded in a more subtle manner to the drugs tested consistent with the higher UPS activity of these cells. In addition, the data demonstrates that autophagy may play a protective role depending on AML subtype. Specific modulators of autophagy and UPS are, therefore, promising targets for combining with standard therapeutic interventions in some AML subtypes.


Assuntos
Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Terapia de Alvo Molecular , Peptídeo Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citarabina/farmacologia , Dano ao DNA , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Células HL-60 , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
18.
Cell Cycle ; 12(8): 1189-200, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23518504

RESUMO

In many organisms, attenuation of growth signaling by caloric restriction or mutational inactivation of growth signaling pathways extends lifespan and protects against cancer and other age-related diseases. The focus of many efforts to understand these effects has been on the induction of oxidative stress defenses that inhibit cellular senescence and cell death. Here we show that in the model organism S. cerevisiae, growth signaling induces entry of cells in stationary phase into S phase in parallel with loss of reproductive capacity, which is enhanced by elevated concentrations of glucose. Overexpression of RNR1 encoding a ribonucleotide reductase subunit required for the synthesis of deoxynucleotide triphosphates and DNA replication suppresses the accelerated loss of reproductive capacity of cells cultured in high glucose. The reduced reproductive capacity of these cells is also suppressed by excess threonine, which buffers dNTP pools when ribonucleotide reductase activity is limiting. Caloric restriction or inactivation of the AKT homolog Sch9p inhibits senescence and death in stationary phase cells caused by the DNA replication inhibitor hydroxyurea or by inactivation of the DNA replication and repair proteins Sgs1p or Rad27p. Inhibition of DNA replication stress represents a novel mechanism by which caloric restriction promotes longevity in S. cerevisiae. A similar mechanism may promote longevity and inhibit cancer and other age-related diseases in humans.


Assuntos
Replicação do DNA/fisiologia , Longevidade/fisiologia , Fase S/fisiologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia , Restrição Calórica , Técnicas de Cultura de Células , Proliferação de Células , Glucose/metabolismo , Ribonucleotídeo Redutases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Treonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA