Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(15)2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31344857

RESUMO

Current treatments for diabetic retinopathy (DR) target late stages when vision has already been significantly affected. Accumulating evidence suggests that neuroinflammation plays a major role in the pathogenesis of DR, resulting in the disruption of the blood-retinal barrier. Suppressors of cytokine signaling (SOCS) are cytokine-inducible proteins that function as a negative feedback loop regulating cytokine responses. On this basis, the aim of the present study was to evaluate the effect of a SOCS1-derived peptide administered by eye drops (2 weeks) on retinal neuroinflammation and early microvascular abnormalities in a db/db mouse model. In brief, we found that SOCS1-derived peptide significantly reduced glial activation and neural apoptosis induced by diabetes, as well as retinal levels of proinflammatory cytokines. Moreover, a significant improvement of electroretinogram parameters was observed, thus revealing a clear impact of the histological findings on global retinal function. Finally, SOCS1-derived peptide prevented the disruption of the blood-retinal barrier. Overall, our results suggest that topical administration of SOCS1-derived peptide is effective in preventing retinal neuroinflammation and early microvascular impairment. These findings could open up a new strategy for the treatment of early stages of DR.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Retinopatia Diabética/tratamento farmacológico , Inflamação/tratamento farmacológico , Proteína 1 Supressora da Sinalização de Citocina/farmacologia , Animais , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Eletrorretinografia , Humanos , Inflamação/genética , Inflamação/patologia , Camundongos , Soluções Oftálmicas/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Retina/efeitos dos fármacos , Retina/patologia , Proteína 1 Supressora da Sinalização de Citocina/química
2.
Int J Mol Sci ; 19(8)2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127248

RESUMO

Diabetic retinopathy (DR) has been classically considered a microcirculatory disease of the retina. However, there is growing evidence to suggest that retinal neurodegeneration is also an early event in the pathogenesis of DR. Citicoline has been successfully used as a neuroprotective agent in the treatment of glaucoma but their effects on DR remain to be elucidated. On this basis, the main aim of the present study was to evaluate the effect of topical administration of citicoline in liposomal formulation on retinal neurodegeneration in db/db mouse and to investigate the underlying mechanisms of action. The treatment (citicoline or vehicle) was topically administered twice daily for 15 days. Retinal analyses were performed in vivo by electroretinography and ex vivo by using Western blot and immunofluorescence measurements. We found that the liposomal formulation of citicoline prevented glial activation and neural apoptosis in the diabetic retina. The main mechanism implicated in these beneficial effects were the inhibition of the downregulation of synaptophysin and its anti-inflammatory properties by means of preventing the upregulation of NF-κB and TNF-α (Tumor Necrosis Factor α) induced by diabetes. Overall, these results suggest that topical administration of citicoline in liposomal formulation could be considered as a new strategy for treating the early stages of DR.


Assuntos
Citidina Difosfato Colina/uso terapêutico , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/etiologia , Fármacos Neuroprotetores/uso terapêutico , Retina/efeitos dos fármacos , Administração Tópica , Animais , Citidina Difosfato Colina/administração & dosagem , Retinopatia Diabética/patologia , Lipossomos , Masculino , Camundongos , Fármacos Neuroprotetores/administração & dosagem , Nootrópicos/administração & dosagem , Nootrópicos/uso terapêutico , Retina/patologia
3.
Curr Eye Res ; 42(9): 1273-1286, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28574750

RESUMO

PURPOSE: The mechanisms involved in the reported beneficial effects of Calcium dobesilate monohydrate (CaD) for the treatment of diabetic retinopathy (DR) remain to be elucidated. The main aim of the present study is to examine whether CaD prevents early events in the pathogenesis of DR such as neurodegeneration and vascular leakage. In addition, putative mediators of both neurodegeneration (glutamate/GLAST, ET-1/ETB receptor) and early microvascular impairment (ET-1/ETA receptor, oxidative stress, VEGF, and the PKC-delta-p38 MAPK pathway) have been examined. METHODS: Diabetic (db/db) mice were randomly assigned to daily oral treatment with CaD (200 mg/Kg/day) (n = 12) or vehicle (n = 12) for 14 days. In addition, 12 non-diabetic (db/+) mice matched by age were used as the control group. Functional abnormalities were assessed by electroretinography. Neurodegeneration and microvascular abnormalities were evaluated by immunohistochemistry and Western blot. Glutamate was determined by HPLC. RESULTS: CaD significantly decreased glial activation and apoptosis and produced a significant improvement in the electroretinogram parameters. Mechanistically, CaD prevented the diabetes-induced up-regulation of ET-1 and its cognate receptors (ETA-R and ETB-R), which are involved in microvascular impairment and neurodegeneration, respectively. In addition, treatment with CaD downregulated GLAST, the main glutamate transporter, and accordingly prevented the increase in glutamate. Finally, CaD prevented oxidative stress, and the upregulation of VEGF and PKC delta-p38 MAPK pathway induced by diabetes, thus resulting in a significant reduction in vascular leakage. CONCLUSIONS: Our findings demonstrate for the first time that CaD exerts neuroprotection in an experimental model of DR. In addition, we provide first evidence that CaD prevents the overexpression of ET-1 and its receptors in the diabetic retina. These beneficial effects on the neurovascular unit could pave the way for clinical trials addressed to confirm the effectiveness of CaD in very early stages of DR.


Assuntos
Dobesilato de Cálcio/farmacologia , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/complicações , Retinopatia Diabética/prevenção & controle , Estresse Oxidativo/genética , Retina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Sobrevivência Celular , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/etiologia , Eletrorretinografia , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica , Hemostáticos/farmacologia , Humanos , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Microscopia de Fluorescência , Estresse Oxidativo/efeitos dos fármacos , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Retina/efeitos dos fármacos , Retina/patologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA