Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(1): e1011040, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36630458

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous human pathogen that is transmitted in saliva. EBV transits through the oral epithelium to infect B cells, where it establishes a life-long latent infection. Reinfection of the epithelium is believed to be mediated by virus shed from B cells, but whether a latent reservoir can exist in the epithelia is unknown. We previously developed an in vitro organotypic model of stratified epithelium where EBV can readily replicate within the suprabasal layers of the epithelium following apical infection mediated by virus-producing B cells. Given that infected epithelial cells and cell-free virus are observed in saliva, we examined the ability of both of these to mediate infection in organotypic cultures. Epithelial-derived cell-free virus was able to infect organotypic cultures from the apical surface, but showed enhanced infection of B cells. Conversely, B cell-derived virus exhibited enhanced infection of epithelial cells. While EBV has been detected in basal cells in oral hairy leukoplakia, it is unknown whether EBV can be seen in undifferentiated primary keratinocytes in the basal layer. Undifferentiated epithelial cells expressed proposed EBV receptors in monolayer and were susceptible to viral binding and entry. Integrins, and occasionally ephrin A2, were expressed in the basal layer of gingiva and tonsil derived organotypic cultures, but the known B-cell receptors HLAII and CD21 were not detected. Following infection with cell-free virus or virus-producing B cells at either the apical or basolateral surface of preformed organotypic cultures, abundant infection was detected in differentiated suprabasal cells while more limited but readily detectable infection was observed in the undifferentiated basal cells. Together, our data has provided new insight into EBV infection in stratified epithelium.


Assuntos
Infecções por Vírus Epstein-Barr , Humanos , Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4 , Epitélio/metabolismo , Células Epiteliais/metabolismo , Queratinócitos
2.
J Virol ; 97(2): e0152822, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36688650

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous human pathogen that infects the majority of the adult population regardless of socioeconomic status or geographical location. EBV primarily infects B and epithelial cells and is associated with different cancers of these cell types, such as Burkitt lymphoma and nasopharyngeal carcinoma. While the life cycle of EBV in B cells is well understood, EBV infection within epithelium is not, largely due to the inability to model productive replication in epithelium in vitro. Organotypic cultures generated from primary human keratinocytes can model many aspects of EBV infection, including productive replication in the suprabasal layers. The EBV glycoprotein BDLF2 is a positional homologue of the murine gammaherpesvirus-68 protein gp48, which plays a role in intercellular spread of viral infection, though sequence homology is limited. To determine the role that BDLF2 plays in EBV infection, we generated a recombinant EBV in which the BDLF2 gene has been replaced with a puromycin resistance gene. The ΔBDLF2 recombinant virus infected both B cell and HEK293 cell lines and was able to immortalize primary B cells. However, the loss of BDLF2 resulted in substantially fewer infected cells in organotypic cultures compared to wild-type virus. While numerous clusters of infected cells representing a focus of infection are observed in wild-type-infected organotypic cultures, the majority of cells observed in the absence of BDLF2 were isolated cells, suggesting that the EBV glycoprotein BDLF2 plays a major role in intercellular viral spread in stratified epithelium. IMPORTANCE The ubiquitous herpesvirus Epstein-Barr virus (EBV) is associated with cancers of B lymphocytes and epithelial cells and is primarily transmitted in saliva. While several models exist for analyzing the life cycle of EBV in B lymphocytes, models of EBV infection in the epithelium have more recently been established. Using an organotypic culture model of epithelium that we previously determined accurately reflects EBV infection in situ, we have ascertained that the loss of the viral envelope protein BDLF2 had little effect on the EBV life cycle in B cells but severely restricted the number of infected cells in organotypic cultures. Loss of BDLF2 has a substantial impact on the size of infected areas, suggesting that BDLF2 plays a specific role in the spread of infection in stratified epithelium.


Assuntos
Epitélio , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Proteínas do Envelope Viral , Adulto , Animais , Humanos , Camundongos , Epitélio/virologia , Infecções por Vírus Epstein-Barr/virologia , Células HEK293 , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidade , Neoplasias/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
3.
Bio Protoc ; 12(6): e4365, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35434197

RESUMO

The ubiquitous and cancer-associated Epstein-Barr virus (EBV) is associated with nearly all cases of nasopharyngeal carcinoma (NPC). Nasopharyngeal tissue is comprised of both pseudostratified and stratified epithelium, which are modeled in three-dimensional (3-D) cell culture. The cellular origin of EBV-associated NPC is as yet unknown, but both latent and lytic infections are likely important for preneoplastic mechanisms and replenishing the compartmentalized viral reservoir. Conventional 2-D cultures of nasopharyngeal epithelial cells (as primary cells or immortalized cell lines) are difficult to infect with EBV and cannot mimic the tissue-specific biology of the airway epithelium, which can only be captured in 3-D models. We have shown that EBV can infect the pseudostratified epithelium in air-liquid interface (ALI) culture using primary conditionally reprogrammed cells (CRCs) derived from the nasopharynx. In this protocol, we provide a step-by-step guide for the (i) conditional reprogramming of primary nasopharyngeal cells, (ii) differentiation of CRCs into pseudostratified epithelium in ALI culture (known as pseudo-ALI), and (iii) EBV infection of pseudo-ALI cultures. Additionally, we show that nasopharyngeal CRCs can be grown as organotypic rafts and subjected to EBV infection. These nasopharyngeal-derived 3-D cell cultures can be used to study EBV latent and lytic infection in relation to cell type and donor variation, by immunostaining and single-cell RNA-sequencing methods ( Ziegler et al., 2021 ). These methods are useful for studies of EBV molecular pathogenesis, and can overcome many of the limitations associated with conventional 2-D cell cultures. Graphic abstract: Workflow of nasopharyngeal-derived conditionally reprogrammed cells grown into pseudostratified-ALI and organotypic rafts in 3-D cell culture. Created with Biorender.com.

4.
Comp Med ; 70(5): 312-322, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32972486

RESUMO

Epstein-Barr Virus (EBV) is a γ-herpesvirus which infects over 90% of the adult human population. Most notably, this virus causes infectious mononucleosis but it is also associated with cancers such as Hodgkin and Burkitt lymphoma. EBV is a species-specific virus and has been studied in many animal models, including nonhuman primates, guinea pigs, humanized mice, and tree shrews. However, none of these animal models are considered the "gold standard" for EBV research. Recently, rabbits have emerged as a viable alternative model, as they are susceptible to EBV infection. In addition, the EBV infection progresses after immune suppression with cyclosporine A (CsA), modeling the reactivation of EBV after latency. We sought to refine this model for acute or active EBV infections by performing antibody-mediated depletion of certain immune subsets in rabbits. Fourteen 16 to 20-wk old, NZW rabbits were intravenously inoculated with EBV and concurrently treated with either anti-CD4 T-cell antibody, anti-pan-T-cell antibody (anti CD45), CSA, or, as a control, anti-HPV antibody. Rabbits that received the depleting antibodies were treated with CsA 3 times at a dose of 15 mg/kg SC once per day for 4 d starting at the time of EBV inoculation then the dose was increased to 20 mg/kg SC twice weekly for 2 wk. Weights, temperatures, and clinical signs were monitored, and rabbits were anesthetized once weekly for blood collection. When compared with the control group, anti-CD4-treated rabbits had fewer clinical signs and displayed higher levels of viral DNA via qPCR in splenocytes; however, flow cytometry results showed only a partial depletion of CD4 T-cells. Treatment with anti-pan-T-cell antibody did not result in noticeable T-cell depletion. These data suggest the EBV-infected rabbit is a promising model for testing antiviral medications and prophylactic vaccines for EBV.


Assuntos
Infecções por Vírus Epstein-Barr , Animais , Anticorpos Antivirais , DNA Viral , Cobaias , Herpesvirus Humano 4/genética , Imunidade , Camundongos , Coelhos
5.
Methods Mol Biol ; 1532: 65-78, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27873267

RESUMO

While numerous model systems are available to study EBV latency in B cells and have contributed greatly to our understanding of the role of these cells in the viral life cycle, models to study the EBV life cycle in epithelial cells in vitro are lacking. Epithelial cells are poorly infected in vitro, and EBV-infected cell lines have not been successfully obtained from epithelial tumors. Recently, we have demonstrated that organotypic cultures of oral keratinocytes can be used as a model to study EBV infection in the epithelial tissue. These "raft" cultures generate a stratified tissue resembling the epithelium seen in vivo with a proliferating basal layer and differentiating suprabasal layers. Here, we describe generation of EBV-infected raft cultures established from primary oral mucosal epithelial cells, which exhibit high levels of productive replication induced by differentiation, as well as methods to analyze EBV infection.


Assuntos
Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/fisiologia , Técnicas de Cultura de Órgãos , Animais , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Genoma Viral , Humanos , Queratinócitos/metabolismo , Queratinócitos/virologia , Camundongos , Mucosa Bucal/metabolismo , Mucosa Bucal/patologia , Mucosa Bucal/virologia , Reação em Cadeia da Polimerase em Tempo Real , Carga Viral , Replicação Viral
6.
Mol Cancer Ther ; 13(12): 2784-92, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25319394

RESUMO

With an increasing number of clinical trials looking at combination therapies in cancer, potential drug-drug interactions require particular attention. One such instance is the treatment of CD30(+) tumors after previous vorinostat (SAHA; suberoylanilide hydroxyamic acid) failure with the anti-CD30 antibody-drug conjugate brentuximab vedotin. Using B-, T-, and natural killer (NK)-cell lines in vitro, we demonstrate that SAHA downregulates the expression of CD30 and lowers the efficacy of subsequent brentuximab vedotin treatment if baseline CD30 levels are reduced by 50% or more. Interestingly, low-dose SAHA treatment that maintained 50% or more of basal CD30 expression followed by subsequent treatment with brentuximab vedotin led to enhanced antitumor activity. The downregulation of CD30 was short lived upon SAHA removal, suggesting that allowing SAHA washout may circumvent any interactions with subsequent drug therapies. Our findings confirm the requirement of CD30 for brentuximab vedotin efficacy and suggest that combination treatment with SAHA in CD30(dim) tumors may decrease efficacy. Combination treatment in highly CD30(+) tumors, however, increases efficacy and warrants further consideration as a new treatment paradigm.


Assuntos
Ácidos Hidroxâmicos/farmacologia , Imunoconjugados/farmacologia , Antígeno Ki-1/antagonistas & inibidores , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Brentuximab Vedotin , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Antagonismo de Drogas , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Antígeno Ki-1/genética , Linfócitos/imunologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Vorinostat
7.
Proc Natl Acad Sci U S A ; 111(46): 16544-9, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25313069

RESUMO

Epstein-Barr virus is a ubiquitous human herpesvirus associated with epithelial and lymphoid tumors. EBV is transmitted between human hosts in saliva and must cross the oral mucosal epithelium before infecting B lymphocytes, where it establishes a life-long infection. The latter process is well understood because it can be studied in vitro, but our knowledge of infection of epithelial cells has been limited by the inability to infect epithelial cells readily in vitro or to generate cell lines from EBV-infected epithelial tumors. Because epithelium exists as a stratified tissue in vivo, organotypic cultures may serve as a better model of EBV in epithelium than monolayer cultures. Here, we demonstrate that EBV is able to infect organotypic cultures of epithelial cells to establish a predominantly productive infection in the suprabasal layers of stratified epithelium, similar to that seen with Kaposi's-associated herpesvirus. These cells did express latency-associated proteins in addition to productive-cycle proteins, but a population of cells that exclusively expressed latency-associated viral proteins could not be detected; however, an inability to infect the basal layer would be unlike other herpesviruses examined in organotypic cultures. Furthermore, infection did not induce cellular proliferation, as it does in B cells, but instead resulted in cytopathic effects more commonly associated with productive viral replication. These data suggest that infection of epithelial cells is an integral part of viral spread, which typically does not result in the immortalization or enhanced growth of infected epithelial cells but rather in efficient production of virus.


Assuntos
Herpesvirus Humano 4/fisiologia , Queratinócitos/virologia , Replicação Viral , Aciclovir/farmacologia , Antivirais/farmacologia , Técnicas de Cultura de Células , Diferenciação Celular , Efeito Citopatogênico Viral , DNA Viral/análise , DNA Viral/genética , Antígenos Nucleares do Vírus Epstein-Barr/biossíntese , Antígenos Nucleares do Vírus Epstein-Barr/genética , Regulação Viral da Expressão Gênica , Gengiva/citologia , Humanos , Queratinócitos/metabolismo , Queratinócitos/ultraestrutura , Queratinas/análise , Tonsila Palatina/citologia , Plasmídeos/genética , Precursores de Proteínas/análise , RNA Viral/biossíntese , RNA Viral/genética , Transativadores/biossíntese , Transativadores/genética , Proteínas da Matriz Viral/biossíntese , Proteínas da Matriz Viral/genética , Proteínas Virais/biossíntese , Proteínas Virais/genética , Cultura de Vírus , Latência Viral , Replicação Viral/efeitos dos fármacos
8.
PLoS Pathog ; 10(10): e1004415, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25275486

RESUMO

Latent infection by Epstein-Barr virus (EBV) is highly associated with the endemic form of Burkitt lymphoma (eBL), which typically limits expression of EBV proteins to EBNA-1 (Latency I). Interestingly, a subset of eBLs maintain a variant program of EBV latency - Wp-restricted latency (Wp-R) - that includes expression of the EBNA-3 proteins (3A, 3B and 3C), in addition to EBNA-1. In xenograft assays, Wp-R BL cell lines were notably more tumorigenic than their counterparts that maintain Latency I, suggesting that the additional latency-associated proteins expressed in Wp-R influence cell proliferation and/or survival. Here, we evaluated the contribution of EBNA-3A. Consistent with the enhanced tumorigenic potential of Wp-R BLs, knockdown of EBNA-3A expression resulted in abrupt cell-cycle arrest in G0/G1 that was concomitant with conversion of retinoblastoma protein (Rb) to its hypophosphorylated state, followed by a loss of Rb protein. Comparable results were seen in EBV-immortalized B lymphoblastoid cell lines (LCLs), consistent with the previous observation that EBNA-3A is essential for sustained growth of these cells. In agreement with the known ability of EBNA-3A and EBNA-3C to cooperatively repress p14(ARF) and p16(INK4a) expression, knockdown of EBNA-3A in LCLs resulted in rapid elevation of p14(ARF) and p16I(NK4a). By contrast, p16(INK4a) was not detectably expressed in Wp-R BL and the low-level expression of p14(ARF) was unchanged by EBNA-3A knockdown. Amongst other G1/S regulatory proteins, only p21(WAF1/CIP1), a potent inducer of G1 arrest, was upregulated following knockdown of EBNA-3A in Wp-R BL Sal cells and LCLs, coincident with hypophosphorylation and destabilization of Rb and growth arrest. Furthermore, knockdown of p21(WAF1/CIP1) expression in Wp-R BL correlated with an increase in cellular proliferation. This novel function of EBNA-3A is distinct from the functions previously described that are shared with EBNA-3C, and likely contributes to the proliferation of Wp-R BL cells and LCLs.


Assuntos
Antígenos Virais/metabolismo , Linfoma de Burkitt/virologia , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Humanos , Camundongos
9.
J Virol ; 86(2): 1034-45, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22072770

RESUMO

Establishment of persistent Epstein-Barr virus (EBV) infection requires transition from a program of full viral latency gene expression (latency III) to one that is highly restricted (latency I and 0) within memory B lymphocytes. It is well established that DNA methylation plays a critical role in EBV gene silencing, and recently the chromatin boundary protein CTCF has been implicated as a pivotal regulator of latency via its binding to several loci within the EBV genome. One notable site is upstream of the common EBNA gene promoter Cp, at which CTCF may act as an enhancer-blocking factor to initiate and maintain silencing of EBNA gene transcription. It was previously suggested that increased expression of CTCF may underlie its potential to promote restricted latency, and here we also noted elevated levels of DNA methyltransferase 1 (DNMT1) and DNMT3B associated with latency I. Within B-cell lines that maintain latency I, however, stable knockdown of CTCF, DNMT1, or DNMT3B or of DNMT1 and DNMT3B in combination did not result in activation of latency III protein expression or EBNA gene transcription, nor did knockdown of DNMTs significantly alter CpG methylation within Cp. Thus, differential expression of CTCF and DNMT1 and -3B is not critical for maintenance of restricted latency. Finally, mutant EBV lacking the Cp CTCF binding site exhibited sustained Cp activity relative to wild-type EBV in a recently developed B-cell superinfection model but ultimately was able to transition to latency I, suggesting that CTCF contributes to but is not necessarily essential for the establishment of restricted latency.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Infecções por Vírus Epstein-Barr/enzimologia , Herpesvirus Humano 4/fisiologia , Proteínas Repressoras/metabolismo , Latência Viral , Fator de Ligação a CCCTC , Linhagem Celular , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/genética , Humanos , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , DNA Metiltransferase 3B
10.
J Virol ; 85(21): 11435-47, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21865378

RESUMO

An ordered silencing of Epstein-Barr virus (EBV) latency gene transcription is critical for establishment of persistent infection within B lymphocytes, yet the mechanisms responsible and the role that the virus itself may play are unclear. Here we describe two B-cell superinfection models with which to address these problems. In the first, Burkitt lymphoma (BL) cells that maintain latency I, when superinfected, initially supported transcription from the common EBNA promoters Wp and Cp (latency III) but ultimately transitioned to latency I (Cp/Wp silent), an essential requirement for establishment of EBV latency in vivo. We used this model to test whether the early lytic-cycle gene BHLF1, implicated in silencing of the Cp/Wp locus, is required to establish latency I. Upon superinfection with EBV deleted for the BHLF1 locus, however, we have demonstrated that BHLF1 is not essential for this aspect of EBV latency. In the second model, BL cells that maintain Wp-restricted latency, a variant program in which Cp is silent but Wp remains active, sustained the latency III program of transcription from the superinfecting-virus genomes, failing to transition to latency I. Importantly, there was substantial reduction in Wp-mediated protein expression from endogenous EBV genomes, in the absence of Cp reactivation, that could occur independent of a parallel decrease in mRNA. Thus, our data provide evidence of a novel, potentially posttranscriptional mechanism for trans-repression of Wp-dependent gene expression. We suggest that this may ensure against overexpression of the EBV nuclear antigens (EBNAs) prior to the transcriptional repression of Wp in cis that occurs upon activation of Cp.


Assuntos
Regulação para Baixo , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/fisiologia , Regiões Promotoras Genéticas , Proteínas Virais/biossíntese , Latência Viral , Linfócitos B/virologia , Linhagem Celular , Humanos
11.
Front Biosci ; 13: 5916-27, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18508632

RESUMO

Epstein-Barr Virus (EBV) is the causative agent of acute infectious mononucleosis and associates with malignancies such as Burkitt lymphoma, nasopharyngeal carcinoma, and non-Hodgkin's lymphoma. Additionally, EBV is responsible for B-lymphoproliferative disease in the context of HIV-infection, genetic immunodeficiencies and organ/stem-cell transplantation. Here we discuss past and current efforts to design an EBV vaccine. We further describe preliminary studies of a novel cocktail vaccine expressing both lytic and latent EBV proteins. Specifically, a tetrameric vaccinia virus (VV) -based vaccine was formulated to express the EBV lytic proteins gp350 and gp110, and the latent proteins EBNA-2 and EBNA-3C. In a proof-of-concept study, mice were vaccinated with the individual or mixed VV. Each of the passenger genes was expressed in vivo at levels sufficient to elicit binding antibody responses. Neutralizing gp350-specific antibodies were also elicited, as were EBV-specific T-cell responses, following inoculation of mice with the single or mixed VV. Results encourage further development of the cocktail vaccine strategy as a potentially powerful weapon against EBV infection and disease in humans.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/imunologia , Vacinas Virais , Animais , Formação de Anticorpos , Humanos , Camundongos , Modelos Animais , Neoplasias/imunologia , Neoplasias/virologia , Vacinas Sintéticas
12.
Cancer Treat Res ; 133: 163-83, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17672041

RESUMO

EBV-associated malignancies remain a considerable problem in HIV-infected individuals, even in the era of HAART. Although EBV is a common factor, each disease has a unique pathogenesis. Study of these diseases reveals the viral proteins expressed in the malignancies that might contribute to the development of the disease as well as the molecular basis for pathogenesis. It is likely that this knowledge will contribute to the development of novel therapeutics that will result in more favorable outcomes in the future.


Assuntos
Síndrome da Imunodeficiência Adquirida/complicações , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4/fisiologia , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/isolamento & purificação , Humanos , Neoplasias/patologia , Neoplasias/virologia , Latência Viral
13.
J Virol ; 80(22): 11200-8, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16956945

RESUMO

Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA-3C) is essential for EBV-mediated immortalization of human B lymphocytes and regulates both the cell cycle and transcription. Transient reporter gene assays have implicated a pivotal role for EBNA-3C in the regulation of transcription of the majority of latency-associated genes expressed during the EBV growth program, including the viral oncoprotein LMP-1. To examine the regulation of latency gene expression by EBNA-3C, we generated an EBV-positive cell line that inducibly expresses EBNA-3C. This cell line allowed us to examine expression from the endogenous latency gene promoters in the context of an actual latent infection and the presence of other EBNA proteins, in particular EBNA-2, which is presumed to coregulate transcription with EBNA-3C. EBNA-3C induced the expression of both LMP-1 and LMP-2B mRNAs from the bidirectional LMP-1/LMP-2B promoter. In contrast, no effect was seen on expression from the common EBNA promoter Cp, which is responsive to EBNA-3C in reporter assays. Activation of LMP expression was not the consequence of increases in EBNA-2, PU.1 or Spi-B transcription factors, all of which are believed to be critical for activation of LMP-1. Chromatin immunoprecipitation assays furthermore indicated that EBNA-3C is present at the bidirectional LMP-1/LMP-2B promoter. These results indicate that EBNA-3C directly activates the expression of LMP-1 and LMP-2B but is unlikely to significantly regulate EBNA expression via Cp under normal growth conditions.


Assuntos
Antígenos Virais/metabolismo , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/fisiologia , Regiões Promotoras Genéticas , Proteínas da Matriz Viral/genética , Antígenos Virais/fisiologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , DNA Viral/metabolismo , Proteínas de Ligação a DNA/análise , Eletroforese em Gel de Poliacrilamida , Antígenos Nucleares do Vírus Epstein-Barr/análise , Humanos , Immunoblotting , Proteínas Proto-Oncogênicas/análise , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/análise , Fatores de Transcrição/análise , Proteínas da Matriz Viral/biossíntese , Proteínas Virais/análise
14.
J Virol ; 77(10): 5639-48, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12719556

RESUMO

Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA-3C) is a large transcriptional regulator essential for EBV-mediated immortalization of B lymphocytes. We previously identified interactions between EBNA-3C and two cellular transcription factors, J kappa and Spi proteins, through which EBNA-3C regulates transcription. To better understand the contribution of these interactions to EBNA-3C function and EBV latency, we examined whether they are conserved in the homologous proteins of nonhuman primate lymphocryptoviruses (LCVs), which bear a strong genetic and biological similarity to EBV. The homologue of EBNA-3C encoded by the LCV that infects baboons (BaLCV) was found to be only 35% identical in sequence to its EBV counterpart. Of particular significance, this homology localized predominantly to the N-terminal half of the molecule, which encompasses the domains in EBNA-3C that interact with J kappa and Spi proteins. Like EBNA-3C, both BaLCV and rhesus macaque LCV (RhLCV) 3C proteins bound to J kappa and repressed transcription mediated by EBNA-2 through its interaction with J kappa. Both nonhuman primate 3C proteins were also able to activate transcription mediated by the Spi proteins in the presence of EBNA-2. Like EBNA-3C, a domain encompassing the putative basic leucine zipper motif of the BaLCV-3C protein directly interacted with both Spi-1 and Spi-B. Surprisingly, a recently identified motif in EBNA-3C that mediates repression was not identifiable in the BaLCV-3C protein. Finally, although the C terminus of BaLCV-3C bears minimal homology to EBNA-3C, it nonetheless contains a C-terminal domain rich in glutamine and proline that was able to function as a potent transcriptional activation domain, as does the C terminus of EBNA-3C. The conservation of these functional motifs despite poor overall homology among the LCV 3C proteins strongly suggests that the interactions of EBNA-3C with J kappa and Spi do indeed play significant roles in the life cycle of EBV.


Assuntos
Sequência de Aminoácidos , Antígenos Virais/metabolismo , Sequência Conservada , Lymphocryptovirus/genética , Macaca mulatta/virologia , Proteínas Nucleares , Papio/virologia , Animais , Antígenos Virais/genética , Linfócitos B/virologia , Sequência de Bases , Linhagem Celular , Transformação Celular Viral , Proteínas de Ligação a DNA/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr , Regulação da Expressão Gênica , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina , Lymphocryptovirus/metabolismo , Lymphocryptovirus/fisiologia , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
15.
J Virol ; 77(6): 3690-701, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12610144

RESUMO

Viruses utilize numerous mechanisms to counteract the host's immune response. Interferon production is a major component of the host antiviral response. Many viruses, therefore, produce proteins or RNA molecules that inhibit interferon-induced signal transduction pathways and their associated antiviral effects. Surprisingly, some viruses directly induce expression of interferon-induced genes. SM, an early lytic Epstein-Barr virus (EBV) nuclear protein, was found to specifically increase the expression of several genes (interferon-stimulated genes) that are known to be strongly induced by alpha/beta interferons. SM does not directly stimulate alpha/beta interferon secretion but instead induces STAT1, an intermediate step in the interferon signaling pathway. SM is a posttranscriptional activator of gene expression and increases STAT1 mRNA accumulation, particularly that of the functionally distinct STAT1beta splice variant. SM expression in B lymphocytes is associated with decreased cell proliferation but does not decrease cell viability or induce cell cycle arrest. These results indicate that EBV can specifically induce cellular genes that are normally physiological targets of interferon by inducing components of cytokine signaling pathways. Our findings therefore suggest that some aspects of the interferon response may be positively modulated by infecting viruses.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Interferon-alfa/farmacologia , Interferon beta/farmacologia , Fosfoproteínas/metabolismo , Proteínas/metabolismo , Transativadores/metabolismo , Proteínas Virais , Linfócitos B , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Fosfoproteínas/genética , Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT1 , Transativadores/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA