Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain ; 147(9): 2998-3008, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38606777

RESUMO

Apilimod dimesylate is a first-in-class phosphoinositide kinase, FYVE-type zinc finger-containing (PIKfyve) inhibitor with a favourable clinical safety profile and has demonstrated activity in preclinical C9orf72 and TDP-43 amyotrophic lateral sclerosis (ALS) models. In this ALS clinical trial, the safety, tolerability, CNS penetrance and modulation of pharmacodynamic target engagement biomarkers were evaluated. This phase 2a, randomized, double-blind, placebo-controlled, biomarker-end-point clinical trial was conducted in four US centres (ClinicalTrials.gov NCT05163886). Participants with C9orf72 repeat expansions were randomly assigned (2:1) to receive twice-daily oral treatment with 125 mg apilimod dimesylate capsules or matching placebo for 12 weeks, followed by a 12-week open-label extension. Safety was measured as the occurrence of treatment-emergent or serious adverse events attributable to the study drug and tolerability at trial completion or treatment over 12 weeks. Changes from baseline in plasma and CSF and concentrations of apilimod dimesylate and its active metabolites and of pharmacodynamic biomarkers of PIKfyve inhibition [soluble glycoprotein nonmetastatic melanoma protein B (sGPNMB) upregulation] and disease-specific CNS target engagement [poly(GP)] were measured. Between 16 December 2021 and 7 July 2022, 15 eligible participants were enrolled. There were no drug-related serious adverse events reported in the trial. Fourteen (93%) participants completed the double-blind period with 99% dose compliance [n = 9 (90%) apilimod dimesylate; n = 5 (100%) placebo]. At Week 12, apilimod dimesylate was measurable in CSF at 1.63 ng/ml [standard deviation (SD): 0.937]. At Week 12, apilimod dimesylate increased plasma sGPNMB by >2.5-fold (P < 0.001), indicating PIKfyve inhibition, and lowered CSF poly(GP) protein levels by 73% (P < 0.001), indicating CNS tissue-level proof of mechanism. Apilimod dimesylate met prespecified key safety and biomarker end-points in this phase 2a trial and demonstrated CNS penetrance and pharmacodynamic target engagement. Apilimod dimesylate was observed to result in the greatest reduction in CSF poly(GP) levels observed to date in C9orf72 clinical trials.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Método Duplo-Cego , Adulto , Idoso , Proteína C9orf72/genética , Pirazóis/uso terapêutico , Pirazóis/farmacocinética , Resultado do Tratamento , Biomarcadores/sangue , Hidrazonas , Morfolinas , Pirimidinas
2.
Front Neurosci ; 14: 602235, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381010

RESUMO

Progranulin (PGRN) is a tightly regulated, secreted glycoprotein involved in a wide range of biological processes that is of tremendous interest to the scientific community due to its involvement in neoplastic, neurodevelopmental, and neurodegenerative diseases. In particular, progranulin haploinsufficiency leads to frontotemporal dementia. While performing experiments with a HIS-tagged recombinant human (rh) PGRN protein, we observed a measurable depletion of protein from solution due to its adsorption onto polypropylene (PPE) microcentrifuge tubes. In this study, we have quantified the extent of rhPGRN adsorption to PPE tubes while varying experimental conditions, including incubation time and temperature. We found that ∼25-35% of rhPGRN becomes adsorbed to the surface of PPE tubes even after a short incubation period. We then directly showed the deleterious impact of PGRN adsorption in functional assays and have recommended alternative labware to minimize these effects. Although the risk of adsorption of some purified proteins and peptides to polymer plastics has been characterized previously, this is the first report of rhPGRN adsorption. Moreover, since PGRN is currently being studied and utilized in both basic science laboratories to perform in vitro studies and translational laboratories to survey PGRN as a quantitative dementia biomarker and potential replacement therapy, the reported observations here are broadly impactful and will likely significantly affect the design and interpretation of future experiments centered on progranulin biology.

4.
Proc Natl Acad Sci U S A ; 111(13): 4994-9, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24707048

RESUMO

The process by which excitatory neurons are generated and mature during the development of the cerebral cortex occurs in a stereotyped manner; coordinated neuronal birth, migration, and differentiation during embryonic and early postnatal life are prerequisites for selective synaptic connections that mediate meaningful neurotransmission in maturity. Normal cortical function depends upon the proper elaboration of neurons, including the initial extension of cellular processes that lead to the formation of axons and dendrites and the subsequent maturation of synapses. Here, we examine the role of cell-based signaling via the receptor tyrosine kinase EphA7 in guiding the extension and maturation of cortical dendrites. EphA7, localized to dendritic shafts and spines of pyramidal cells, is uniquely expressed during cortical neuronal development. On patterned substrates, EphA7 signaling restricts dendritic extent, with Src and Tsc1 serving as downstream mediators. Perturbation of EphA7 signaling in vitro and in vivo alters dendritic elaboration: Dendrites are longer and more complex when EphA7 is absent and are shorter and simpler when EphA7 is ectopically expressed. Later in neuronal maturation, EphA7 influences protrusions from dendritic shafts and the assembling of synaptic components. Indeed, synaptic function relies on EphA7; the electrophysiological maturation of pyramidal neurons is delayed in cultures lacking EphA7, indicating that EphA7 enhances synaptic function. These results provide evidence of roles for Eph signaling, first in limiting the elaboration of cortical neuronal dendrites and then in coordinating the maturation and function of synapses.


Assuntos
Córtex Cerebral/metabolismo , Espinhas Dendríticas/metabolismo , Neurogênese , Receptor EphA7/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Efrina-A5/metabolismo , Potenciais Pós-Sinápticos Excitadores , Feminino , Ligantes , Camundongos , Células Piramidais/metabolismo , Ratos , Sinapses/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA