Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
2.
BMC Complement Med Ther ; 22(1): 263, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36221070

RESUMO

BACKGROUND: Complementary medicine (CM) is frequently used by patients, but little is known about the usage of CM in surgical patients. The study aimed to elucidate the relevance of CM in surgery. METHODS: This cross-sectional, multi-center survey utilized a paper-based questionnaire consisting of 21 questions to capture CM usage and interest as well as CM communication in visceral and thoracic surgical patients being hospitalized at the corresponding departments of surgery at the University Medical Centers in Freiburg, Heidelberg und Ulm, Germany. RESULTS: Overall, 151 patients consented to the survey. On average, current CM usage was stated by 44% of patients. Most frequently used CM approaches were physical exercise (63%), nutritional supplements (59%) and herbal medicine (56%). Strong interest in CM counselling was stated by 51% of patients. Almost 80% of patients wanted to be treated in a holistic manner and desired for reliable information about CM as well as CM informed physicians. Only 12% of patients communicated CM usage and interest with their attending physician. Review of literature revealed similar results showing an overall CM usage of 43%, preferring nutritional supplements and herbal medicine. CONCLUSION: The results of our cross-sectional study indicate a high percentage of CM users and a strong interest in CM among surgical patients. Indeed, the current communication about CM between patients and surgeons is poor. With respect to safety and quality reasons, but also to pay attention to patients' demands, physicians should be aware of patients' CM usage in surgery. TRIAL REGISTRATION: German Clinical Trial register (DRKS00015445).


Assuntos
Terapias Complementares , Comunicação , Estudos Transversais , Alemanha , Humanos , Inquéritos e Questionários
3.
Cell Rep ; 39(3): 110710, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35443164

RESUMO

Cytokines released during chronic inflammatory diseases induce pro-inflammatory properties in polymorphonuclear neutrophils (PMNs). Here, we describe the development of a subgroup of human PMNs expressing CCR5, termed CCR5+ PMNs. Auto- and paracrine tumor necrosis factor (TNF) signaling increases intracellular neutrophil elastase (ELANE) abundance and induces neutrophil extracellular traps formation (NETosis) in CCR5+ PMNs, and triggering of CCR5 amplifies NETosis. Membranous TNF (mTNF) outside-in signaling induces the formation of reactive oxygen species, known activators of NETosis. In vivo, we find an increased number of CCR5+ PMNs in the peripheral blood and inflamed lamina propria of patients with ulcerative colitis (UC). Notably, failure of anti-TNF therapy is associated with higher frequencies of CCR5+ PMNs. In conclusion, we identify a phenotype of pro-NETotic, CCR5+ PMNs present in inflamed tissue in vivo and inducible in vitro. These cells may reflect an important component of tissue damage during chronic inflammation and could be of diagnostic value.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Humanos , Inflamação , Receptores Tipo II do Fator de Necrose Tumoral , Inibidores do Fator de Necrose Tumoral
4.
Front Immunol ; 13: 1063313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591284

RESUMO

Use of chimeric antigen receptor (CAR) T cells to treat B cell lymphoma and leukemia has been remarkably successful. Unfortunately, the therapeutic efficacy of CAR T cells against solid tumors is very limited, with immunosuppression by the pro-oxidative tumor microenvironment (TME) a major contributing factor. High levels of reactive oxygen species are well-tolerated by tumor cells due to their elevated expression of antioxidant proteins; however, this is not the case for T cells, which consequently become hypo-responsive. The aim of this study was to improve CAR T cell efficacy in solid tumors by empowering the antioxidant capacity of CAR T cells against the pro-oxidative TME. To this end, HER2-specific human CAR T cells stably expressing two antioxidant systems: thioredoxin-1 (TRX1), and glutaredoxin-1 (GRX1) were generated and characterized. Thereafter, antitumor functions of CAR T cells were evaluated under control or pro-oxidative conditions. To provide insights into the role of antioxidant systems, gene expression profiles as well as global protein oxidation were analyzed. Our results highlight that TRX1 is pivotal for T cell redox homeostasis. TRX1 expression allows CAR T cells to retain their cytolytic immune synapse formation, cytokine release, proliferation, and tumor cell-killing properties under pro-oxidative conditions. Evaluation of differentially expressed genes and the first comprehensive redoxosome analysis of T cells by mass spectrometry further clarified the underlying mechanisms. Taken together, enhancement of the key antioxidant TRX1 in human T cells opens possibilities to increase the efficacy of CAR T cell treatment against solid tumors.


Assuntos
Imunoterapia Adotiva , Neoplasias , Estresse Oxidativo , Linfócitos T , Microambiente Tumoral , Humanos , Antioxidantes/metabolismo , Imunoterapia Adotiva/métodos , Neoplasias/imunologia , Neoplasias/terapia , Oxirredução , Estresse Oxidativo/genética , Estresse Oxidativo/imunologia , Linfócitos T/imunologia , Tiorredoxinas/genética , Tiorredoxinas/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
5.
BMC Complement Med Ther ; 21(1): 285, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34814885

RESUMO

BACKGROUND: The results of recent surveys indicate that more than 50% of the German population has experience with complementary and alternative medicine (CAM) or uses CAM regularly. This study investigated the CAM usage and CAM-related needs of hospitalized patients at university medical centres in the state of Baden-Württemberg, Germany. METHODS: A multi-centre, paper-based, pseudonymous survey was carried out by the members of the Academic Centre for Complementary and Integrative Medicine. Patients of all ages, regardless of sex, diagnosis and treatment, who were hospitalized in the Department of Cardiology, Gastroenterology, Oncology, Gynaecology or Surgery at the university medical centres in Freiburg, Heidelberg, Tübingen and Ulm were eligible for inclusion. RESULTS: Of the 1275 eligible patients, 67% (n = 854) consented to participate in the survey. Forty-eight percent of the study participants stated that they were currently using CAM. The most frequently used therapies were exercise (63%), herbal medicine (54%) and dietary supplements (53%). Only 16% of the patients discussed CAM usage with their attending physician. Half of the patients (48%) were interested in CAM consultations. More than 80% of the patients desired reliable CAM information and stated that physicians should be better informed about CAM. CONCLUSIONS: The frequency of CAM usage and the need for CAM counselling among hospitalized patients at university medical centres in Baden-Württemberg are high. To better meet patients' needs, CAM research and physician education should be intensified. TRIAL REGISTRATION: German Clinical Trial register ( DRKS00015445 ).


Assuntos
Centros Médicos Acadêmicos , Terapias Complementares/estatística & dados numéricos , Hospitalização , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Feminino , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários , Adulto Jovem
6.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072260

RESUMO

The understanding of the tumor microenvironment (TME) has been expanding in recent years in the context of interactions among different cell types, through direct cell-cell communication as well as through soluble factors. It has become evident that the development of a successful antitumor response depends on several TME factors. In this context, the number, type, and subsets of immune cells, as well as the functionality, memory, and exhaustion state of leukocytes are key factors of the TME. Both the presence and functionality of immune cells, in particular T cells, are regulated by cellular and soluble factors of the TME. In this regard, one fundamental reason for failure of antitumor responses is hijacked immune cells, which contribute to the immunosuppressive TME in multiple ways. Specifically, reactive oxygen species (ROS), metabolites, and anti-inflammatory cytokines have central roles in generating an immunosuppressive TME. In this review, we focused on recent developments in the immune cell constituents of the TME, and the micromilieu control of antitumor responses. Furthermore, we highlighted the current challenges of T cell-based immunotherapies and potential future strategies to consider for strengthening their effectiveness.


Assuntos
Imunomodulação , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Animais , Biomarcadores , Humanos , Vigilância Imunológica , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Neoplasias/metabolismo , Neoplasias/terapia , Infiltração de Neutrófilos , Espécies Reativas de Oxigênio , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Linfócitos T/metabolismo , Resultado do Tratamento , Evasão Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia
7.
Adv Biol Regul ; 77: 100741, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32773102

RESUMO

Pandemic coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and poses an unprecedented challenge to healthcare systems due to the lack of a vaccine and specific treatment options. Accordingly, there is an urgent need to understand precisely the pathogenic mechanisms underlying this multifaceted disease. There is increasing evidence that the immune system reacts insufficiently to SARS-CoV-2 and thus contributes to organ damage and to lethality. In this review, we suggest that the overwhelming production of reactive oxygen species (ROS) resulting in oxidative stress is a major cause of local or systemic tissue damage that leads to severe COVID-19. It increases the formation of neutrophil extracellular traps (NETs) and suppresses the adaptive arm of the immune system, i.e. T cells that are necessary to kill virus-infected cells. This creates a vicious cycle that prevents a specific immune response against SARS-CoV-2. The key role of oxidative stress in the pathogenesis of severe COVID-19 implies that therapeutic counterbalancing of ROS by antioxidants such as vitamin C or NAC and/or by antagonizing ROS production by cells of the mononuclear phagocyte system (MPS) and neutrophil granulocytes and/or by blocking of TNF-α can prevent COVID-19 from becoming severe. Controlled clinical trials and preclinical models of COVID-19 are needed to evaluate this hypothesis.


Assuntos
Antioxidantes/uso terapêutico , Infecções por Coronavirus/epidemiologia , Armadilhas Extracelulares/imunologia , Linfopenia/epidemiologia , Neutrófilos/imunologia , Pandemias , Pneumonia Viral/epidemiologia , Acetilcisteína/uso terapêutico , Ácido Ascórbico/uso terapêutico , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Citocinas/genética , Citocinas/imunologia , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Linfopenia/tratamento farmacológico , Linfopenia/imunologia , Linfopenia/virologia , NF-kappa B/genética , NF-kappa B/imunologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/virologia , Estresse Oxidativo/efeitos dos fármacos , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , SARS-CoV-2 , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/virologia
8.
Front Immunol ; 11: 1172, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595640

RESUMO

Piperlongumine (PL), a natural small molecule derived from the Piper longum Linn plant, has received growing interest as a prooxidative drug with promising anticancer properties. Yet, the influence of PL on primary human T cells remained elusive. Knowledge of this is of crucial importance, however, since T cells in particular play a critical role in tumor control. Therefore, we investigated the effects of PL on the survival and function of primary human peripheral blood T cells (PBTs). While PL was not cytotoxic to PBTs, it interfered with several stages of T cell activation as it inhibited T cell/APC immune synapse formation, co-stimulation-induced upregulation of CD69 and CD25, T cell proliferation and the secretion of proinflammatory cytokines. PL-induced immune suppression was prevented in the presence of thiol-containing antioxidants. In line with this finding, PL increased the levels of intracellular reactive oxygen species and decreased glutathione in PBTs. Diminished intracellular glutathione was accompanied by a decrease in S-glutathionylation on actin suggesting a global alteration of the antioxidant response. Gene expression analysis demonstrated that TH17-related genes were predominantly inhibited by PL. Consistently, the polarization of primary human naïve CD4+ T cells into TH17 subsets was significantly diminished while differentiation into Treg cells was substantially increased upon PL treatment. This opposed consequence for TH17 and Treg cells was again abolished by thiol-containing antioxidants. Taken together, PL may act as a promising agent for therapeutic immunosuppression by exerting prooxidative effects in human T cells resulting in a diminished TH17 but enhanced Treg cell differentiation.


Assuntos
Diferenciação Celular/efeitos da radiação , Dioxolanos/farmacologia , Imunossupressores/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia
9.
Clin Nutr ; 39(11): 3241-3250, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32147197

RESUMO

BACKGROUND: Vegan diet (VD) has improved inflammatory activity in patients with rheumatoid arthritis (RA) in several small controlled trials. The underlying mechanism remains widely unclear. We investigated the effect of a VD in comparison to a meat-rich diet (MD) on markers of inflammation (which have been shown to be relevant in patients with RA) in healthy volunteers. METHODS: 53 healthy, omnivore subjects were randomized to a controlled VD (n = 26) or MD (n = 27) for 4 weeks following a pre-treatment phase of a one week controlled mixed diet. Primary parameters of interest were sialylation of immunoglobulins, percentage of regulatory T-cells and level of interleukin 10 (IL10). Usual care immune parameters used in patients with RA and amino acid serum levels as well as granulocytes and monocytes colony stimulating factor (GM-CSF) serum levels were secondary parameters. RESULTS: In the VD group, total leukocyte, neutrophil, monocyte and platelet counts decreased and after four weeks they were significantly lower compared to the MD group (ANCOVA: leukocytes p = 0.003, neutrophils p = 0.001, monocytes p = 0.032, platelets p = 0.004). Leukocytes, neutrophils, monocytes, and platelets correlated with each other and likewise conform with serum levels of branched-chain amino acids, which were significantly lower in the VD compared to the MD group. The primary parameters did not differ between the groups and BMI remained stable in the two groups. CONCLUSION: Four weeks of a controlled VD affected the number of neutrophils, monocytes and platelets but not the number or function of lymphocytes. The relation with branched-chain amino acids and GM-CSF suggests a mode of action via the mTOR signaling pathway. REGISTERED AT: http://www.drks.de (German Clinical Trial register) at DRKS00011963.


Assuntos
Aminoácidos de Cadeia Ramificada/sangue , Plaquetas/metabolismo , Dieta Vegana , Monócitos/metabolismo , Neutrófilos/metabolismo , Adulto , Artrite Reumatoide/sangue , Artrite Reumatoide/dietoterapia , Biomarcadores/sangue , Dieta/métodos , Ingestão de Alimentos/fisiologia , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/sangue , Voluntários Saudáveis , Humanos , Imunoglobulinas/sangue , Inflamação , Interleucina-10/sangue , Masculino , Transdução de Sinais/fisiologia , Linfócitos T Reguladores/metabolismo , Serina-Treonina Quinases TOR/sangue
10.
Front Cell Dev Biol ; 8: 618261, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585453

RESUMO

The actin cytoskeleton of eukaryotic cells is a dynamic, fibrous network that is regulated by the concerted action of actin-binding proteins (ABPs). In particular, rapid polarization of cells in response to internal and external stimuli is fundamental to cell migration and invasion. Various isoforms of ABPs in different tissues equip cells with variable degrees of migratory and adhesive capacities. In addition, regulation of ABPs by posttranslational modifications (PTM) is pivotal to the rapid responsiveness of cells. In this context, phosphorylation of ABPs and its functional consequences have been studied extensively. However, the study of reduction/oxidation (redox) modifications of oxidation-sensitive cysteine and methionine residues of actin, ABPs, adhesion molecules, and signaling proteins regulating actin cytoskeletal dynamics has only recently emerged as a field. The relevance of such protein oxidations to cellular physiology and pathophysiology has remained largely elusive. Importantly, studying protein oxidation spatiotemporally can provide novel insights into localized redox regulation of cellular functions. In this review, we focus on the redox regulation of the actin cytoskeleton, its challenges, and recently developed tools to study its physiological and pathophysiological consequences.

11.
Cell Rep ; 29(8): 2295-2306.e6, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31747602

RESUMO

The death receptor CD95 is expressed in every cancer cell, thus providing a promising tool to target cancer. Activation of CD95 can, however, lead to apoptosis or proliferation. Yet the molecular determinants of CD95's mode of action remain unclear. Here, we identify an optimal distance between CD95Ligand molecules that enables specific clustering of receptor-ligand pairs, leading to efficient CD95 activation. Surprisingly, efficient CD95 activation leads to apoptosis in cancer cells in vitro and increased tumor growth in vivo. We show that allowing a 3D aggregation of cancer cells in vitro switches the apoptotic response to proliferation. Indeed, we demonstrate that the absence or presence of cell-cell contacts dictates the cell response to CD95. Cell contacts increase global levels of phosphorylated tyrosines, including CD95's tyrosine. A tyrosine-to-alanine CD95 mutant blocks proliferation in cells in contact. Our study sheds light into the regulatory mechanism of CD95 activation that can be further explored for anti-cancer therapies.


Assuntos
Proteínas Tirosina Quinases/metabolismo , Receptor fas/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Comunicação Celular/genética , Comunicação Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Humanos , Fosforilação/genética , Fosforilação/fisiologia , Proteínas Tirosina Quinases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Receptor fas/genética
12.
Nat Commun ; 10(1): 4073, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31501427

RESUMO

Several antitumor therapies work by increasing reactive oxygen species (ROS) within the tumor micromilieu. Here, we reveal that L-plastin (LPL), an established tumor marker, is reversibly regulated by ROS-induced thiol oxidation on Cys101, which forms a disulfide bridge with Cys42. LPL reduction is mediated by the Thioredoxin1 (TRX1) system, as shown by TRX1 trapping, TRX1 knockdown and blockade of Thioredoxin1 reductase (TRXR1) with auranofin. LPL oxidation diminishes its actin-bundling capacity. Ratiometric imaging using an LPL-roGFP-Orp1 fusion protein and a dimedone-based proximity ligation assay (PLA) reveal that LPL oxidation occurs primarily in actin-based cellular extrusions and strongly inhibits cell spreading and filopodial extension formation in tumor cells. This effect is accompanied by decreased tumor cell migration, invasion and extracellular matrix (ECM) degradation. Since LPL oxidation occurs following treatment of tumors with auranofin or γ-irradiation, it may be a molecular mechanism contributing to the effectiveness of tumor treatment with redox-altering therapies.


Assuntos
Actinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neoplasias/metabolismo , Alquilação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Extensões da Superfície Celular/metabolismo , Cisteína/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Modelos Biológicos , Mutação/genética , Oxirredução , Compostos de Sulfidrila/metabolismo , Tiorredoxina Redutase 1/metabolismo
13.
Neurogastroenterol Motil ; 31(10): e13674, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31318473

RESUMO

BACKGROUND: The enteric nervous system (ENS), a complex network of neurons and glial cells, coordinates major gastrointestinal functions. Impaired development or secondary aberrations cause severe enteric neuropathies. Neural crest-derived stem cells as well as enteric neuronal progenitor cells, which form enteric neurospheres, represent a promising tool to unravel molecular pathomechanisms and to develop novel therapy options. However, so far little is known about the detailed cellular composition and the proportional distribution of enteric neurospheres. Comprehensive knowledge will not only be essential for basic research but also for prospective cell replacement therapies to restore or to improve enteric neuronal dysfunction. METHODS: Human enteric neurospheres were generated from three individuals with varying age. For detailed molecular characterization, nCounter target gene expression analyses focusing on stem, progenitor, neuronal, glial, muscular, and epithelial cell markers were performed. Corresponding archived paraffin-embedded individuals' specimens were analyzed accordingly. KEY RESULTS: Our data revealed a remarkable molecular complexity of enteric neurospheres and archived specimens. Amongst the expression of multipotent stem cell, progenitor cell, neuronal, glial, muscle and epithelial cell markers, moderate levels for the pluripotency marker POU5F1 were observed. Furthermore, besides the interindividual variability, we identified highly distinct intraindividual expression profiles. CONCLUSIONS & INFERENCES: Our results emphasize the assessment of molecular signatures to be essential for standardized use, optimization of experimental approaches, and elimination of potential risk factors, as the formation of tumors. Our study pipeline may serve as a blueprint implemented into the characterization procedure of enteric neurospheres for various future applications.


Assuntos
Sistema Nervoso Entérico/metabolismo , Células Epiteliais/metabolismo , Plexo Mientérico/metabolismo , Miócitos de Músculo Liso/metabolismo , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Adolescente , Técnicas de Cultura de Células , Criança , Perfilação da Expressão Gênica , Humanos , Íleo/citologia , Íleo/metabolismo , Lactente , Microdissecção e Captura a Laser , Plexo Mientérico/citologia , Crista Neural/metabolismo , Transcriptoma
14.
Inflamm Res ; 68(4): 337-345, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30758522

RESUMO

OBJECTIVE AND DESIGN: Abdominal aortic aneurysm (AAA) is heavily infiltrated with leukocytes, expressing the DNA sensor absent in melanoma 2 (AIM2) and other inflammasome components. METHODS: Using multicolour flow cytometry, we here compared the expression of the inflammasome components AIM2, NLRP3, and ASC in different peripheral immune cells derived from AAA patients with those from non-AAA patients in a case-control study. In parallel, peripheral blood mononuclear cells (PBMC) of AAA patients and controls were stimulated in vitro with poly-dA:dT or lipopolysaccharide (LPS) to analyze inflammasome activation. RESULTS: AIM2 expression was significantly increased in peripheral granulocytes (P = 0.026), monocytes (P = 0.007), B lymphocytes (P < 0.0001), and T lymphocytes (P = 0.004) of AAA patients. Expression of other inflammasome components did not differ between the groups. Following in vitro stimulation with foreign DNA, PBMC derived from AAA patients released significantly more IL-1ß (P = 0.022) into the supernatant than PBMC from control patients. In contrast, IL-1ß release upon LPS stimulation did not differ between the PBMC groups. CONCLUSION: The data indicate the increased activation of an AIM2 inflammasome in peripheral immune cells of AAA patients and point to a systemic AIM2-associated immune response to AAA.


Assuntos
Aneurisma da Aorta Abdominal/imunologia , Proteínas de Ligação a DNA/imunologia , Inflamassomos/imunologia , Leucócitos Mononucleares/imunologia , Idoso , DNA/imunologia , Feminino , Humanos , Interferon beta/sangue , Interleucina-1beta/sangue , Leucócitos Mononucleares/citologia , Masculino , Pessoa de Meia-Idade
15.
Adv Biol Regul ; 71: 79-87, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30528536

RESUMO

Sulforaphane (SFN) is a naturally occurring isothiocyanate derived from cruciferous vegetables such as broccoli. It has been reported to inhibit the growth of a variety of cancers, such as breast, prostate, colon, skin, lung, gastric or bladder cancer. SFN is supposed to act primarily as an antioxidant due to the activation of the Nrf2-Keap1 signaling pathway. This enhances the activity of phase II detoxifying enzymes and the trapping of free radicals. Finally, SFN induces cell cycle arrest or apoptosis of tumor cells. Here, we discuss effects of SFN on the immune defense system. In contrast to the situation in tumor cells, SFN acts pro-oxidatively in primary human T cells. It increases intracellular ROS levels and decreases GSH, resulting in inhibition of T cell activation and T cell effector functions. Regarding the use of SFN as an "anticancer agent" we conclude that SFN could act as a double-edged sword. On the one hand it reduces carcinogenesis, on the other hand it blocks the T cell-mediated immune response, the latter being important for immune surveillance of tumors. Thus, SFN could also interfere with the successful application of immunotherapy by immune checkpoint inhibitors (e.g. CTLA-4 antibodies and PD-1/PD-L1 antibodies) or CAR T cells. Therefore, a combination of SFN with T cell-mediated cancer immunotherapies does not seem advisable.


Assuntos
Imunidade Celular/efeitos dos fármacos , Isotiocianatos/uso terapêutico , Proteínas de Neoplasias/imunologia , Neoplasias , Transdução de Sinais , Linfócitos T , Animais , Glutationa/imunologia , Humanos , Isotiocianatos/efeitos adversos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Espécies Reativas de Oxigênio/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Sulfóxidos , Linfócitos T/imunologia , Linfócitos T/patologia
16.
Front Immunol ; 9: 2584, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30487791

RESUMO

The activity and function of T-cells are influenced by the intra- and extracellular redox milieu. Oxidative stress induces hypo responsiveness of untransformed T-cells. Vice versa increased glutathione (GSH) levels or decreased levels of reactive oxygen species (ROS) prime T-cell metabolism for inflammation, e.g., in rheumatoid arthritis. Therefore, balancing the T-cell redox milieu may represent a promising new option for therapeutic immune modulation. Here we show that sulforaphane (SFN), a compound derived from plants of the Brassicaceae family, e.g., broccoli, induces a pro-oxidative state in untransformed human T-cells of healthy donors or RA patients. This manifested as an increase of intracellular ROS and a marked decrease of GSH. Consistently, increased global cysteine sulfenylation was detected. Importantly, a major target for SFN-mediated protein oxidation was STAT3, a transcription factor involved in the regulation of TH17-related genes. Accordingly, SFN significantly inhibited the activation of untransformed human T-cells derived from healthy donors or RA patients, and downregulated the expression of the transcription factor RORγt, and the TH17-related cytokines IL-17A, IL-17F, and IL-22, which play a major role within the pathophysiology of many chronic inflammatory/autoimmune diseases. The inhibitory effects of SFN could be abolished by exogenously supplied GSH and by the GSH replenishing antioxidant N-acetylcysteine (NAC). Together, our study provides mechanistic insights into the mode of action of the natural substance SFN. It specifically exerts TH17 prone immunosuppressive effects on untransformed human T-cells by decreasing GSH and accumulation of ROS. Thus, SFN may offer novel clinical options for the treatment of TH17 related chronic inflammatory/autoimmune diseases such as rheumatoid arthritis.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Reumatoide/tratamento farmacológico , Inflamação/tratamento farmacológico , Isotiocianatos/farmacologia , Linfócitos T/imunologia , Brassicaceae/imunologia , Células Cultivadas , Regulação para Baixo , Glutationa/metabolismo , Humanos , Terapia de Imunossupressão , Interleucina-17/metabolismo , Interleucinas/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Sulfóxidos , Linfócitos T/efeitos dos fármacos , Interleucina 22
17.
J Autoimmun ; 94: 110-121, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30061013

RESUMO

NF-κB inducing kinase (NIK) is the key protein of the non-canonical NF-κB pathway and is important for the development of lymph nodes and other secondary immune organs. We elucidated the specific role of NIK in T cells using T-cell specific NIK-deficient (NIKΔT) mice. Despite showing normal development of lymphoid organs, NIKΔT mice were resistant to induction of CNS autoimmunity. T cells from NIKΔT mice were deficient in late priming, failed to up-regulate T-bet and to transmigrate into the CNS. Proteomic analysis of activated NIK-/- T cells showed de-regulated expression of proteins involved in the formation of the immunological synapse: in particular, proteins involved in cytoskeleton dynamics. In line with this we found that NIK-deficient T cells were hampered in phosphorylation of Zap70, LAT, AKT, ERK1/2 and PLCγ upon TCR engagement. Hence, our data disclose a hitherto unknown function of NIK in T-cell priming and differentiation.


Assuntos
Actinas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Ativação Linfocitária , Proteínas Serina-Treonina Quinases/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Actinas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Linfonodos/imunologia , Linfonodos/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/imunologia , Glicoproteína Mielina-Oligodendrócito/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Fosfolipase C gama/genética , Fosfolipase C gama/imunologia , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais , Baço/imunologia , Baço/patologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologia , Linfócitos T/patologia , Proteína-Tirosina Quinase ZAP-70/genética , Proteína-Tirosina Quinase ZAP-70/imunologia , Quinase Induzida por NF-kappaB
18.
Immun Inflamm Dis ; 5(4): 480-492, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28681454

RESUMO

INTRODUCTION: Hyporesponsiveness of human lamina propria immune cells to microbial and nutritional antigens represents one important feature of intestinal homeostasis. It is at least partially mediated by low expression of the innate response receptors CD11b, CD14, CD16 as well as the cystine-glutamate transporter xCT on these cells. Milieu-specific mechanisms leading to the down-regulation of these receptors on circulating monocytes, the precursor cells of resident macrophages, are mostly unknown. METHODS: Here, we addressed the question whether the short chain fatty acid n-butyrate, a fermentation product of the mammalian gut microbiota exhibiting histone deacetylase inhibitory activity, is able to modulate expression of these receptors in human circulating monocytes. RESULTS: Exposure to n-butyrate resulted in the downregulation of CD11b, CD14, as well as CD16 surface expression on circulating monocytes. XCT transcript levels in circulating monocytes were also reduced following exposure to n-butyrate. Importantly, treatment resulted in the downregulation of protein and gene expression of the transcription factor PU.1, which was shown to be at least partially required for the expression of CD16 in circulating monocytes. PU.1 expression in resident macrophages in situ was observed to be substantially lower in healthy when compared to inflamed colonic mucosa. CONCLUSIONS: In summary, the intestinal microbiota may support symbiosis with the human host organism by n-butyrate mediated downregulation of protein and gene expression of innate response receptors as well as xCT on circulating monocytes following recruitment to the lamina propria. Downregulation of CD16 gene expression may at least partially be caused at the transcriptional level by the n-butyrate mediated decrease in expression of the transcription factor PU.1 in circulating monocytes.


Assuntos
Butiratos/imunologia , Imunidade Inata , Monócitos/imunologia , Monócitos/metabolismo , Receptores Imunológicos/metabolismo , Adulto , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Antígenos de Bactérias/imunologia , Biomarcadores , Regulação para Baixo , Exposição Ambiental , Feminino , Imunofluorescência , Regulação da Expressão Gênica , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas/metabolismo , Receptores Imunológicos/genética , Transativadores/metabolismo
19.
J Cell Biochem ; 118(9): 2528-2533, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28252214

RESUMO

The clearance of tumors or virus infected cells is a crucial task of the immune system. Cytotoxic T-cells (CTLs) are able to detect and to kill such altered host cells. Given the recent success of checkpoint inhibitors for tumor therapy, it becomes more and more important to understand the biology of T-cell mediated target cell killing. Tests that allow analyzing the biology of CTLs are either based on flow cytometry or fluorescence microscopy. Thus, they either lack image-based information or have a poor statistical robustness. Therefore, we describe an approach to quantify CTL-mediated cytotoxicity using imaging flow cytometry. Using activated primary human cytotoxic T-cells as CTLs and P815 as target cells, we show that both the evaluation of target cell death and the biology of CTLs can be evaluated in parallel. This enables to gain information about CTL-mediated cytotoxicity in samples from patients important for translational medicine. J. Cell. Biochem. 118: 2528-2533, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citometria de Fluxo/métodos , Imunidade Celular , Linfócitos T CD8-Positivos/citologia , Linhagem Celular , Humanos
20.
Adv Biol Regul ; 63: 107-114, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27720134

RESUMO

T-cells need to be tightly regulated during their activation and effector phase to assure an appropriate defence against cancer or pathogens and - vice versa - to avoid autoimmune reactions. Regulatory signals are provided via the immune synapse between T-cells and antigen-presenting cells (APCs) or target cells. The stability and kinetics of immune synapse formation is critical for proper T-cell functions. It requires dynamic rearrangements of the actin cytoskeleton necessary for organized spatio-temporal redistribution of receptors and adhesion molecules. We identified glucocorticoid-sensitive phosphorylation of serine 5 on the actin-bundling protein L-plastin as one important signalling event for this regulation. Using imaging flow cytometry as well as confocal and super-resolution microscopy we showed that L-plastin relocalizes to the immune synapse upon antigen encounter, where it associates with the ß2-subunit of LFA-1 (CD11a/CD18). Interfering with L-plastin expression or activation leads to a defective LFA-1 recruitment and unstable T-cell/APC contacts. Consequently, the lack of L-plastin diminishes T-cell activation, proliferation and proximal effector responses such as cytokine production. On the other hand, a pro-oxidative milieu leads to prolonged activation of L-plastin resulting in a stronger enrichment of LFA-1 in the cytolytic immune synapse. Concomitant stabilization of conjugates formed by cytotoxic T-cells (CTLs) and their target cells impairs the ability of CTLs to kill more than one target cells (serial killing), which de facto leads to a downregulation of T-cell cytotoxicity. Together, we demonstrate that activation and spacial distribution of L-plastin regulates the maturation and stability of activating and cytolytic immune synapses important for T-cell activation and effector functions.


Assuntos
Células Dendríticas/imunologia , Sinapses Imunológicas/metabolismo , Antígeno-1 Associado à Função Linfocitária/imunologia , Proteínas dos Microfilamentos/imunologia , Linfócitos T Citotóxicos/imunologia , Citoesqueleto de Actina/química , Citoesqueleto de Actina/imunologia , Animais , Sítios de Ligação , Células Dendríticas/química , Regulação da Expressão Gênica , Humanos , Sinapses Imunológicas/química , Ativação Linfocitária , Antígeno-1 Associado à Função Linfocitária/genética , Proteínas dos Microfilamentos/genética , Fosforilação , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/imunologia , Linfócitos T Citotóxicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA