Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 19589, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949903

RESUMO

In cardiovascular disease, pathological and protective roles are reported for the Th2 cytokines IL-4 and IL-13, respectively. We hypothesised that differential effects on macrophage function are responsible. Type I and II receptor subunit (IL-2Rγ, IL-4Rα and IL-13Rα1) and M2 marker (MRC-1, CCL18, CCL22) expression was assessed via RT-qPCR in IL-4- and IL-13-treated human primary macrophages. Downstream signalling was evaluated via STAT1, STAT3 and STAT6 inhibitors, and IL-4- and IL-13-induced reactive oxygen species (ROS) generation assessed. IL-4 and IL-13 exhibited equivalent potency and efficacy for M2 marker induction, which was attenuated by STAT3 inhibition. Both cytokines enhanced PDBu-stimulated superoxide generation however this effect was 17% greater with IL-4 treatment. Type I IL-4 receptor expression was increased on M1-like macrophages but did not lead to a differing ability of these cytokines to modulate M1-like macrophage superoxide production. Overall, this study did not identify major differences in the ability of IL-4 and IL-13 to modulate macrophage function, suggesting that the opposing roles of these cytokines in cardiovascular disease are likely to be via actions on other cell types. Future studies should directly compare IL-4 and IL-13 in vivo to more thoroughly investigate the therapeutic validity of selective targeting of these cytokines.


Assuntos
Doenças Cardiovasculares , Interleucina-13 , Humanos , Doenças Cardiovasculares/metabolismo , Citocinas/metabolismo , Interleucina-13/farmacologia , Interleucina-13/metabolismo , Interleucina-4/farmacologia , Interleucina-4/metabolismo , Macrófagos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
2.
ACS Pharmacol Transl Sci ; 6(5): 842-853, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37200817

RESUMO

H2 relaxin is a peptide hormone that exerts its biological actions through the G protein-coupled receptor, RXFP1. The numerous important biological functions of H2 relaxin, including potent renal, vasodilatory, cardioprotective, and anti-fibrotic actions, have resulted in considerable interest in its use as a therapeutic for various cardiovascular diseases and other fibrotic indications. Interestingly though, H2 relaxin and RXFP1 have been shown to be overexpressed in prostate cancer, allowing for the downregulation or blocking of relaxin/RXFP1 to decrease prostate tumor growth. These findings suggest the application of an RXFP1 antagonist for the treatment of prostate cancer. However, these therapeutically relevant actions are still poorly understood and have been hindered by the lack of a high-affinity antagonist. In this study, we chemically synthesized three novel H2 relaxin analogues that have complex insulin-like structures with two chains (A and B) and three disulfide bridges. We report here the structure-activity relationship studies on H2 relaxin that resulted in the development of a novel high-affinity RXFP1 antagonist, H2 B-R13HR (∼40 nM), that has only one extra methylene group in the side chain of arginine 13 in the B-chain (ArgB13) of H2 relaxin. Most notably, the synthetic peptide was shown to be active in a mouse model of prostate tumor growth in vivo where it inhibited relaxin-mediated tumor growth. Our compound H2 B-R13HR will be an important research tool to understand relaxin actions through RXFP1 and may be a potential lead compound for the treatment of prostate cancer.

3.
Biomed Pharmacother ; 161: 114556, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36948137

RESUMO

BACKGROUND AND PURPOSE: This study investigated the reno-protective effects of a highly selective AT2R agonist peptide, ß-Pro7Ang III in a mouse model of acute kidney injury (AKI). METHODS: C57BL/6 J mice underwent either sham surgery or unilateral kidney ischemia-reperfusion injury (IRI) for 40 min. IRI mice were treated with either ß-Pro7Ang III or perindopril and at 7 days post-surgery the kidneys analysed for histopathology and the development of fibrosis and matrix metalloproteinase (MMP)-2 and -9 activity. The association of the therapeutic effects of ß-Pro7Ang III with macrophage number and phenotype was determined in vivo and in vitro. KEY RESULTS: Decreased kidney tubular injury, interstitial matrix expansion and reduced interstitial immune cell infiltration in IRI mice receiving ß-Pro7Ang III treatment was observed at day 7, compared to IRI mice without treatment. This correlated to reduced collagen accumulation and MMP-2 activity in IRI mice following ß-Pro7Ang III treatment. FACS analysis showed a reduced number and proportion of CD45+CD11b+F4/80+ macrophages in IRI kidneys in response to ß-Pro7Ang III, correlating with a significant increase in M2 macrophage markers and decreased M1 markers at day 3 and 7 post-IR injury, respectively. In vitro analysis of cultured THP-1 cells showed that ß-Pro7Ang III attenuated lipopolysaccharide (LPS)-induced tumour necrosis factor-α (TNF-α) and interleukin (IL)- 6 production but increased IL-10 secretion, compared to LPS alone. CONCLUSION: Administration of ß-Pro7Ang III via mini-pump improved kidney structure and reduced interstitial collagen accumulation, in parallel with an alteration of macrophage phenotype and anti-inflammatory cytokine release, therefore mitigating the downstream progression of ischemic AKI.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Rim , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Colágeno/farmacologia , Traumatismo por Reperfusão/genética , Reperfusão
4.
Can Respir J ; 2023: 1522593, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710924

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterized by excessive deposition of extracellular matrix in the interstitial lung parenchyma, often manifested by dyspnea and progressive loss of lung function. The role of inflammation in the pathogenesis of IPF is not well understood. This study evaluated the histopathological and inflammatory components of bleomycin-induced pulmonary fibrosis in mouse and sheep models, in terms of their ability to translate to the human IPF. Merino sheep (n = 8) were bronchoscopically administered with two bleomycin infusions, two weeks apart, into a caudal lung segment, with a saline (control) administered into a caudal segment in the opposite lung. Balb/c mice were twice intranasally instilled, one week apart, with either bleomycin (n = 7); or saline (control, n = 7). Lung samples were taken for the histopathological assessment 28 days in sheep and 21 days in mice after the first bleomycin administration. We observed tertiary lymphoid aggregates, in the fibrotic lung parenchyma of sheep, but not in mouse lung tissues exposed to bleomycin. B-cell and T-cell infiltration significantly increased in sheep lung tissues compared to mouse lung tissues due to bleomycin injury. Statistical analysis showed that the fibrotic score, fibrotic fraction, and tissue fraction significantly increased in sheep lung tissues compared to murine lung tissues. The presence of tertiary lymphoid aggregates in the lung parenchyma and increased infiltration of T-cells and B-cells, in the sheep model, may be useful for the future study of the underlying inflammatory disease mechanisms in the lung parenchyma of IPF patients.


Assuntos
Bleomicina , Fibrose Pulmonar Idiopática , Humanos , Camundongos , Animais , Bleomicina/toxicidade , Modelos Animais de Doenças , Pulmão/patologia , Inflamação
5.
Pharmacol Res ; 187: 106611, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526079

RESUMO

Brain inflammation and apoptosis contribute to neuronal damage and loss following ischaemic stroke, leading to cognitive and functional disability. It is well-documented that the human gene-2 (H2)-relaxin hormone exhibits pleiotropic properties via its cognate receptor, Relaxin Family Peptide Receptor 1 (RXFP1), including anti-inflammatory and anti-apoptotic effects, thus making it a potential therapeutic for stroke. Hence, the current study investigated whether post-stroke H2-relaxin administration could improve functional and histological outcomes. 8-12-week-old male C57BL/6 mice were subjected to sham operation or photothrombotic stroke and intravenously-administered with either saline (vehicle) or 0.02, 0.2 or 2 mg/kg doses of recombinant H2-relaxin at 6, 24 and 48 h post-stroke. Motor function was assessed using the hanging wire and cylinder test pre-surgery, and at 24 and 72 h post-stroke. Brains were removed after 72 h and infarct volume was assessed via thionin staining, and RXFP1 expression, leukocyte infiltration and apoptosis were determined by immunofluorescence. RXFP1 was identified on neurons, astrocytes and macrophages, and increased post-stroke. Whilst H2-relaxin did not alter infarct volume, it did cause a dose-dependent improvement in motor function at 24 and 72 h post-stroke. Moreover, 2 mg/kg H2-relaxin significantly decreased the number of apoptotic cells as well as macrophages and neutrophils within the ischaemic hemisphere, but did not alter T or B cells numbers. The anti-inflammatory and anti-apoptotic effects of H2-relaxin when administered at 6 h post-cerebral ischaemia may provide a novel therapeutic option for patients following ischaemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Relaxina , Acidente Vascular Cerebral , Camundongos , Animais , Humanos , Masculino , Relaxina/farmacologia , Relaxina/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/química , Receptores de Peptídeos/metabolismo , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/tratamento farmacológico , Encéfalo/metabolismo , Apoptose , Infarto , Anti-Inflamatórios
6.
Biomed Pharmacother ; 158: 114069, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36502754

RESUMO

Fibrosis is a hallmark of chronic hypertension and disrupts the viability of human bone marrow-derived mesenchymal stromal cells (BM-MSCs) post-transplantation. This study thus, determined whether the anti-fibrotic drug, serelaxin (RLX), could enhance the therapeutic effects of BM-MSCs or BM-MSC-derived exosomes (BM-MSC-EXO) in hypertensive mice. Left ventricular (LV) fibrosis in particular was assessed using conventional histological staining and non-invasive cardiac magnetic resonance imaging (CMRI). CMRI was employed using a novel magnetisation prepared 2 rapid acquisition gradient echo (MP2RAGE) sequence to simultaneously perform late gadolinium enhancement imaging and T1 mapping. Adult male C57BL/6 mice were uninephrectomised, received deoxycorticosterone acetate and saline to drink (1 K/DOCA/salt) for 21 days, whilst control mice were given normal drinking water for the same time-period. On day 14 post-injury, subgroups of 1 K/DOCA/salt-hypertensive mice were treated with RLX alone or in combination with BM-MSCs or BM-MSC-EXO; or the mineralocorticoid receptor antagonist, spironolactone. At day 21 post-injury, LV and kidney histopathology was assessed, whilst LV fibrosis and function were additionally analysed by CMRI and echocardiography. 1 K/DOCA/salt-hypertensive mice developed kidney tubular injury, inflammation, fibrosis, and more moderate LV hypertrophy, fibrosis and diastolic dysfunction. RLX and BM-MSCs combined provided optimal protection against these pathologies and significantly reduced picrosirius red-stained organ fibrosis and MP2RAGE analysis of LV fibrosis. A significant correlation between MP2RAGE analysis and histologically-stained interstitial LV fibrosis was detected. It was concluded that the MP2RAGE sequence enhanced the non-invasive CMRI detection of LV fibrosis. Furthermore, combining RLX and BM-MSCs may represent a promising treatment option for hypertensive cardiorenal syndrome.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Transplante de Células-Tronco Mesenquimais , Camundongos , Masculino , Humanos , Animais , Meios de Contraste , Gadolínio/farmacologia , Camundongos Endogâmicos C57BL , Hipertensão/tratamento farmacológico , Fibrose , Transplante de Células-Tronco Mesenquimais/métodos
7.
Cell Mol Life Sci ; 79(11): 579, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319916

RESUMO

Sulforaphane has been investigated in human pathologies and preclinical models of airway diseases. To provide further mechanistic insights, we explored L-sulforaphane (LSF) in the ovalbumin (OVA)-induced chronic allergic airways murine model, with key hallmarks of asthma. Histological analysis indicated that LSF prevented or reversed OVA-induced epithelial thickening, collagen deposition, goblet cell metaplasia, and inflammation. Well-known antioxidant and anti-inflammatory mechanisms contribute to the beneficial effects of LSF. Fourier transform infrared microspectroscopy revealed altered composition of macromolecules, following OVA sensitization, which were restored by LSF. RNA sequencing in human peripheral blood mononuclear cells highlighted the anti-inflammatory signature of LSF. Findings indicated that LSF may alter gene expression via an epigenetic mechanism which involves regulation of protein acetylation status. LSF resulted in histone and α-tubulin hyperacetylation in vivo, and cellular and enzymatic assays indicated decreased expression and modest histone deacetylase (HDAC) inhibition activity, in comparison with the well-known pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). Molecular modeling confirmed interaction of LSF and LSF metabolites with the catalytic domain of metal-dependent HDAC enzymes. More generally, this study confirmed known mechanisms and identified potential epigenetic pathways accounting for the protective effects and provide support for the potential clinical utility of LSF in allergic airways disease.


Assuntos
Antioxidantes , Hipersensibilidade , Camundongos , Humanos , Animais , Leucócitos Mononucleares , Ovalbumina , Epigênese Genética , Anti-Inflamatórios
8.
Int J Mol Sci ; 23(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35806076

RESUMO

Chronic NLRP3 inflammasome activation can promote fibrosis through its production of interleukin (IL)-1ß and IL-18. Conversely, recombinant human relaxin (RLX) can inhibit the pro-fibrotic interactions between IL-1ß, IL-18 and transforming growth factor (TGF)-ß1. Here, the broader extent by which RLX targeted the myofibroblast NLRP3 inflammasome to mediate its anti-fibrotic effects was elucidated. Primary human cardiac fibroblasts (HCFs), stimulated with TGF-ß1 (to promote myofibroblast (HCMF) differentiation), LPS (to prime the NLRP3 inflammasome) and ATP (to activate the NLRP3 inflammasome) (T+L+A) or benzoylbenzoyl-ATP (to activate the ATP receptor; P2X7R) (T+L+Bz), co-expressed relaxin family peptide receptor-1 (RXFP1), the angiotensin II type 2 receptor (AT2R) and P2X7R, and underwent increased protein expression of toll-like receptor (TLR)-4, NLRP3, caspase-1, IL-1ß and IL-18. Whilst RLX co-administration to HCMFs significantly prevented the T+L+A- or T+L+Bz-stimulated increase in these end points, the inhibitory effects of RLX were annulled by the pharmacological antagonism of either RXFP1, AT2R, P2X7R, TLR-4, reactive oxygen species (ROS) or caspase-1. The RLX-induced amelioration of left ventricular inflammation, cardiomyocyte hypertrophy and fibrosis in isoproterenol (ISO)-injured mice, was also attenuated by P2X7R antagonism. Thus, the ability of RLX to ameliorate the myofibroblast NLRP3 inflammasome as part of its anti-fibrotic effects, appeared to involve RXFP1, AT2R, P2X7R and the inhibition of TLR-4, ROS and caspase-1.


Assuntos
Inflamassomos , Relaxina , Trifosfato de Adenosina/metabolismo , Angiotensina II/metabolismo , Animais , Caspase 1/metabolismo , Fibrose , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Miofibroblastos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Relaxina/metabolismo , Relaxina/farmacologia , Receptor 4 Toll-Like/metabolismo
9.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682717

RESUMO

Chronic kidney disease (CKD) affects 1 in 10 members of the general population, placing these patients at an increasingly high risk of kidney failure. Despite the significant burden of CKD on various healthcare systems, there are no effective cures that reverse or even halt its progression. In recent years, human bone-marrow-derived mesenchymal stromal cells (BM-MSCs) have been recognised as a novel therapy for CKDs, owing to their well-established immunomodulatory and tissue-reparative properties in preclinical settings, and their promising safety profile that has been demonstrated in patients with CKDs from several clinical trials. However, renal fibrosis (scarring), a hallmark of CKD, has been shown to impair the viability and functionality of BM-MSCs post-transplantation. This has suggested that BM-MSCs might require a pre-treatment or adjunct therapy that can enhance the viability and therapeutic efficacy of these stromal cells in chronic disease settings. To address this, recent studies that have combined BM-MSCs with the anti-fibrotic drug serelaxin (RLX), have demonstrated the enhanced therapeutic potential of this combination therapy in normotensive and hypertensive preclinical models of CKD. In this review, a critical appraisal of the preclinical data available on the anti-fibrotic and renoprotective actions of BM-MSCs or RLX alone and when combined, as a treatment option for normotensive vs. hypertensive CKD, is discussed.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Insuficiência Renal Crônica , Antifibróticos , Fibrose , Humanos , Insuficiência Renal Crônica/tratamento farmacológico
10.
Cells ; 11(9)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563719

RESUMO

Fetal growth restriction (FGR) is commonly associated with placental insufficiency and inflammation. Nonetheless, the role played by inflammasomes in the pathogenesis of FGR is poorly understood. We hypothesised that placental inflammasomes are differentially expressed and contribute to the aberrant trophoblast function. Inflammasome gene expression profiles were characterised by real-time PCR on human placental tissues collected from third trimester FGR and gestation-matched control pregnancies (n = 25/group). The functional significance of a candidate inflammasome was then investigated using lipopolysaccharide (LPS)-induced models of inflammation in human trophoblast organoids, BeWo cells in vitro, and a murine model of FGR in vivo. Placental mRNA expression of NLRP3, caspases 1, 3, and 8, and interleukin 6 increased (>2-fold), while that of the anti-inflammatory cytokine, IL-10, decreased (<2-fold) in FGR compared with control pregnancies. LPS treatment increased NLRP3 and caspase-1 expression (>2-fold) in trophoblast organoids and BeWo cell cultures in vitro, and in the spongiotrophoblast and labyrinth in the murine model of FGR. However, the LPS-induced rise in NLRP3 was attenuated by its siRNA-induced down-regulation in BeWo cell cultures, which correlated with reduced activity of the apoptotic markers, caspase-3 and 8, compared to the control siRNA-treated cells. Our findings support the role of the NLRP3 inflammasome in the inflammation-induced aberrant trophoblast function, which may contribute to FGR.


Assuntos
Placenta , Trofoblastos , Animais , Caspase 1/metabolismo , Modelos Animais de Doenças , Feminino , Retardo do Crescimento Fetal/genética , Humanos , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Placenta/metabolismo , Gravidez , RNA Interferente Pequeno/metabolismo , Trofoblastos/metabolismo
11.
Curr Mol Med ; 22(3): 240-249, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35034593

RESUMO

Inflammation and fibrosis are two interrelated disease pathologies with several overlapping components. Three specific cell types, namely macrophages, T helper cells, and myofibroblasts, play important roles in regulating both processes. Following tissue injury, an inflammatory stimulus is often necessary to initiate tissue repair, where cytokines released from infiltrating and resident immune and inflammatory cells stimulate the proliferation and activation of extracellular matrix-producing myofibroblasts. However, persistent tissue injury drives an inappropriate pro-fibrotic response. Additionally, activated myofibroblasts can take on the role of traditional antigen-presenting cells, secrete pro-inflammatory cytokines, and recruit inflammatory cells to fibrotic foci, amplifying the fibrotic response in a vicious cycle. Moreover, inflammatory cells have been shown to play contradictory roles in the initiation, amplification, and resolution of fibrotic disease processes. The central role of the inflammasome molecular platform in contributing to fibrosis is only beginning to be fully appreciated. In this review, we discuss the immune mechanisms that can lead to fibrosis, the inflammasomes that have been implicated in the fibrotic process in the context of the immune response to injury, and also discuss current and emerging therapies that target inflammasome-induced collagen deposition to treat organ fibrosis.


Assuntos
Inflamassomos , Miofibroblastos , Citocinas/metabolismo , Fibrose , Humanos , Inflamassomos/metabolismo , Macrófagos/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia
12.
PLoS One ; 16(12): e0260719, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34855848

RESUMO

The primary flavonoid, pinocembrin, is thought to have a variety of medical uses which relate to its reported anti-oxidant, anti-inflammatory, anti-microbial and anti-cancer properties. Some studies have reported that this flavonoid has anti-fibrotic activities. In this study, we investigated whether pinocembrin would impede fibrosis, dampen inflammation and improve lung function in a large animal model of pulmonary fibrosis. Fibrosis was induced in two localized lung segments in each of the 10 sheep participating in the study. This was achieved via two infusions of bleomycin delivered bronchoscopically at a two-week interval. Another lung segment in the same sheep was left untreated, and was used as a healthy control. The animals were kept for a little over 5 weeks after the final infusion of bleomycin. Pinocembrin, isolated from Eucalyptus leaves, was administered to one of the two bleomycin damaged lung segments at a dose of 7 mg. This dose was given once-weekly over 4-weeks, starting one week after the final bleomycin infusion. Lung compliance (as a measure of stiffness) was significantly improved after four weekly administrations of pinocembrin to bleomycin-damaged lung segments. There were significantly lower numbers of neutrophils and inflammatory cells in the bronchoalveolar lavage of bleomycin-infused lung segments that were treated with pinocembrin. Compared to bleomycin damaged lung segments without drug treatment, pinocembrin administration was associated with significantly lower numbers of immuno-positive CD8+ and CD4+ T cells in the lung parenchyma. Histopathology scoring data showed that pinocembrin treatment was associated with significant improvement in inflammation and overall pathology scores. Hydroxy proline analysis showed that the administration of pinocembrin did not reduce the increased collagen content that was induced by bleomycin in this model. Analyses of Masson's Trichrome stained sections showed that pinocembrin treatment significantly reduced the connective tissue content in lung segments exposed to bleomycin when compared to bleomycin-infused lungs that did not receive pinocembrin. The striking anti-inflammatory and modest anti-fibrotic remodelling effects of pinocembrin administration were likely linked to the compound's ability to improve lung pathology and functional compliance in this animal model of pulmonary fibrosis.


Assuntos
Antifibróticos/uso terapêutico , Flavanonas/uso terapêutico , Fibrose Pulmonar/tratamento farmacológico , Animais , Bleomicina/toxicidade , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Modelos Animais de Doenças , Eucalyptus/química , Eucalyptus/metabolismo , Flavanonas/isolamento & purificação , Pulmão/patologia , Neutrófilos/citologia , Neutrófilos/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Testes de Função Respiratória , Índice de Gravidade de Doença , Ovinos , Resultado do Tratamento
13.
Biomed Pharmacother ; 144: 112256, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34607108

RESUMO

Fibrosis, a hallmark of chronic kidney disease (CKD), impairs the viability of human bone marrow derived-mesenchymal stromal cells (BM-MSCs) post-transplantation. To address this, we demonstrated that combining BM-MSCs with the anti-fibrotic drug, serelaxin (RLX), enhanced BM-MSC-induced renoprotection in preclinical CKD models. Given the increased interest and manufacturing advantages to using stem cell-derived exosomes (EXO) as therapeutics, this study determined whether RLX could enhance the therapeutic efficacy of BM-MSC-EXO, and compared the renoprotective effects of RLX and BM-MSC-EXO versus RLX and BM-MSCs in mice with hypertensive CKD. Adult male C57BL/6 mice were uninephrectomised, received deoxycorticosterone acetate and given saline to drink (1K/DOCA/salt) for 21 days. Control mice were uninephrectomised and given normal drinking water for the same time-period. Subgroups of 1K/DOCA/salt-hypertensive mice were then treated with either RLX (0.5 mg/kg/day) or BM-MSC-EXO (25 µg/mouse; equivalent to 1-2 × 106 BM-MSCs/mouse) alone; combinations of RLX and BM-MSC-EXO or BM-MSCs (1 × 106/mouse); or the mineralocorticoid receptor antagonist, spironolactone (20 mg/kg/day), from days 14-21. 1K/DOCA/salt-hypertensive mice developed kidney tubular damage, inflammation and fibrosis, and impaired kidney function 21 days post-injury. Whilst RLX alone attenuated the 1K/DOCA/salt-induced fibrosis, BM-MSC-EXO alone only diminished measures of tissue inflammation post-treatment. Comparatively, the combined effects of RLX and BM-MSC-EXO or BM-MSCs demonstrated similar anti-fibrotic efficacy, but RLX and BM-MSCs offered broader renoprotection over RLX and/or BM-MSC-EXO, and comparable effects to spironolactone. Only RLX and BM-MSCs, but not RLX and/or BM-MSC-EXO, also attenuated the 1K/DOCA/salt-induced hypertension. Hence, although RLX improved the renoprotective effects of BM-MSC-EXO, combining RLX with BM-MSCs provided a better therapeutic option for hypertensive CKD.


Assuntos
Antifibróticos/farmacologia , Anti-Hipertensivos/farmacologia , Exossomos/transplante , Hipertensão/terapia , Rim/efeitos dos fármacos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Relaxina/farmacologia , Insuficiência Renal Crônica/prevenção & controle , Animais , Pressão Sanguínea/efeitos dos fármacos , Células Cultivadas , Terapia Combinada , Acetato de Desoxicorticosterona , Modelos Animais de Doenças , Exossomos/metabolismo , Fibrose , Hipertensão/metabolismo , Hipertensão/patologia , Hipertensão/fisiopatologia , Rim/metabolismo , Rim/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Nefrectomia , Proteínas Recombinantes/farmacologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/fisiopatologia , Cloreto de Sódio na Dieta , Espironolactona/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
15.
Br J Pharmacol ; 178(5): 1164-1181, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33450051

RESUMO

BACKGROUND AND PURPOSE: Fibrosis is a hallmark of chronic kidney disease (CKD) that significantly contributes to renal dysfunction, and impairs the efficacy of stem cell-based therapies. This study determined whether combining bone marrow-derived mesenchymal stem cells (BM-MSCs) with the renoprotective effects of recombinant human relaxin (serelaxin) could therapeutically reduce renal fibrosis in mice with one kidney/deoxycorticosterone acetate/salt (1K/DOCA/salt)-induced hypertension, compared with the effects of the ACE inhibitor, perindopril. EXPERIMENTAL APPROACH: Adult male C57BL/6 mice were uni-nephrectomised and received deoxycorticosterone acetate and saline to drink (1K/DOCA/salt) for 21 days. Control mice were uni-nephrectomised but received water over the same time period. Sub-groups of 1K/DOCA/salt-injured mice (n = 5-8 per group) were treated with either serelaxin (0.5 mg·kg-1 ·day-1 ) or BM-MSCs (1 × 106 per mouse) alone; both treatments combined (with 0.5 × 106 or 1 × 106 BM-MSCs per mouse); or perindopril (2 mg·kg-1 ·day-1 ) from days 14-21. KEY RESULTS: 1K/DOCA/salt-injured mice developed elevated BP and hypertension-induced renal damage, inflammation and fibrosis. BM-MSCs alone reduced the injury-induced fibrosis and attenuated BP to a similar extent as perindopril. Serelaxin alone modestly reduced renal fibrosis and effectively reduced tubular injury. Strikingly, the combined effects of BM-MSCs (at both doses) with serelaxin significantly inhibited renal fibrosis and proximal tubular epithelial injury while restoring renal architecture, to a greater extent than either therapy alone, and over the effects of perindopril. CONCLUSION AND IMPLICATIONS: Combining BM-MSCs and serelaxin provided broader renoprotection over either therapy alone or perindopril and might represent a novel treatment for hypertensive CKD.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão Renal , Hipertensão , Células-Tronco Mesenquimais , Animais , Pressão Sanguínea , Desoxicorticosterona , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Rim , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
J Immunol Res ; 2019: 1278301, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31815149

RESUMO

AIMS: To date, the ROS-generating capacities of macrophages in different activation states have not been thoroughly compared. This study is aimed at determining the nature and levels of ROS generated following stimulation with common activators of M1 and M2 macrophages and investigating the potential for this to impact fibrosis. RESULTS: Human primary and THP-1 macrophages were treated with IFN-γ+LPS or IL-4-activating stimuli, and mRNA expression of established M1 (CXCL11, CCR7, IL-1ß) and M2 (MRC-1, CCL18, CCL22) markers was used to confirm activation. Superoxide generation was assessed by L-012-enhanced chemiluminescence and was increased in both M(IFN-γ+LPS) and M(IL-4) macrophages, as compared to unpolarised macrophages (MΦ). This signal was attenuated with NOX2 siRNA. Increased expression of the p47phox and p67phox subunits of the NOX2 oxidase complex was evident in M(IFN-γ+LPS) and M(IL-4) macrophages, respectively. Amplex Red and DCF fluorescence assays detected increased hydrogen peroxide generation following stimulation with IL-4, but not IFN-γ+LPS. Coculture with human aortic adventitial fibroblasts revealed that M(IL-4), but not M(IFN-γ+LPS), enhanced fibroblast collagen 1 protein expression. Macrophage pretreatment with the hydrogen peroxide scavenger, PEG-catalase, attenuated this effect. CONCLUSION: We show that superoxide generation is not only enhanced with stimuli associated with M1 macrophage activation but also with the M2 stimulus IL-4. Macrophages activated with IL-4 also exhibited enhanced hydrogen peroxide generation which in turn increased aortic fibroblast collagen production. Thus, M2 macrophage-derived ROS is identified as a potentially important contributor to aortic fibrosis.


Assuntos
Fibroblastos/efeitos dos fármacos , Interferon gama/farmacologia , Interleucina-4/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Transdução de Sinais/genética , Catalase/farmacologia , Quimiocina CCL22/genética , Quimiocina CCL22/imunologia , Quimiocina CXCL11/genética , Quimiocina CXCL11/imunologia , Quimiocinas CC/genética , Quimiocinas CC/imunologia , Técnicas de Cocultura , Colágeno Tipo I/genética , Colágeno Tipo I/imunologia , Fibroblastos/citologia , Fibroblastos/imunologia , Regulação da Expressão Gênica , Humanos , Peróxido de Hidrogênio/metabolismo , Interferon gama/antagonistas & inibidores , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-4/antagonistas & inibidores , Lipopolissacarídeos/antagonistas & inibidores , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , NADPH Oxidase 2/genética , NADPH Oxidase 2/imunologia , Oxirredução/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores CCR7/genética , Receptores CCR7/imunologia , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Superóxidos/metabolismo , Células THP-1
17.
Exp Lung Res ; 45(9-10): 310-322, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31762329

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic lung disease with unknown cause. While the drugs nintedanib and pirfenidone have been approved for the treatment of IPF, they only slow disease progression and can induce several side-effects, suggesting that there is still an unmet need to develop new efficacious drugs, and interventions strategies, to combat this disease. We have recently developed a sheep model of pulmonary fibrosis for the preclinical testing of novel anti-fibrotic drugs. The aim of this study was to assess the effects of pirfenidone to ascertain its suitability as a benchmark for comparing other novel therapeutics in this sheep model. To initiate localized fibrosis, sheep were given two infusions of bleomycin (0.6 U/ml per infusion), a fortnight apart, to a specific lung segment. The contralateral lung segment in each sheep was infused with saline to act as an internal control. Two weeks after the final bleomycin infusion, either pirfenidone or methylcellulose (vehicle control) were administered orally to sheep twice daily for 5 weeks. Results showed that sheep treated with pirfenidone had improved lung function, ameliorated fibrotic pathology, lower numbers of active myofibroblasts, and reduced extra cellular matrix deposition when compared with the relevant measurements obtained from control sheep treated with vehicle. This study showed that pirfenidone can attenuate bleomycin-induced pulmonary fibrosis in sheep, and can therefore be used as a positive control to assess other novel therapeutics for IPF in this model.


Assuntos
Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/efeitos dos fármacos , Piridonas/farmacologia , Animais , Bleomicina/farmacologia , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Feminino , Indóis/farmacologia , Miofibroblastos/efeitos dos fármacos , Ovinos
18.
Br J Pharmacol ; 176(13): 2195-2208, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30883698

RESUMO

BACKGROUND AND PURPOSE: There is growing interest in stem cell-derived exosomes for their therapeutic and regenerative benefits given their manufacturing and regulatory advantages over cell-based therapies. As existing fibrosis impedes the viability and efficacy of stem cell/exosome-based strategies for treating chronic diseases, here we tested the effects of the anti-fibrotic drug, serelaxin, on the therapeutic efficacy of human amnion epithelial cell (AEC)-derived exosomes in experimental lung disease. EXPERIMENTAL APPROACH: Female Balb/c mice were subjected to either the 9.5-week model of ovalbumin and naphthalene (OVA/NA)-induced chronic allergic airway disease (AAD) or 3-week model of bleomycin (BLM)-induced pulmonary fibrosis; then administered increasing concentrations of AEC-exosomes (5 µg or 25µg), with or without serelaxin (0.5mg/kg/day) for 7-days. 1x106 AECs co-administered with serelaxin over the corresponding time-period were included for comparison in both models, as was pirfenidone-treatment of the BLM model. Control groups received saline/corn oil or saline, respectively. KEY RESULTS: Both experimental models presented with significant tissue inflammation, remodelling, fibrosis and airway/lung dysfunction at the time-points studied. While AEC-exosome (5 µg or 25µg)-administration alone demonstrated some benefits in each model, serelaxin was required for AEC-exosomes (25µg) to rapidly normalise chronic AAD-induced airway fibrosis and airway reactivity, and BLM-induced lung inflammation, epithelial damage and subepithelial/basement membrane fibrosis. Combining serelaxin with AEC-exosomes (25µg) also demonstrated broader protection compared to co-administration of serelaxin with 1x106 AECs or pirfenidone. CONCLUSIONS AND IMPLICATIONS: Serelaxin enhanced the therapeutic efficacy of AEC-exosomes in treating basement membrane-induced fibrosis and related airway dysfunction.


Assuntos
Exossomos , Fibrose Pulmonar/terapia , Relaxina/uso terapêutico , Hipersensibilidade Respiratória/terapia , Remodelação das Vias Aéreas/efeitos dos fármacos , Âmnio/citologia , Animais , Modelos Animais de Doenças , Células Epiteliais , Feminino , Humanos , Camundongos Endogâmicos BALB C , Fibrose Pulmonar/patologia , Fibrose Pulmonar/fisiopatologia , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Relaxina/farmacologia , Hipersensibilidade Respiratória/patologia , Hipersensibilidade Respiratória/fisiopatologia
19.
FASEB J ; 33(5): 6402-6411, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30768365

RESUMO

The airway remodeling (AWR) associated with chronic allergic airways disease (AAD)/asthma contributes to irreversible airway obstruction. This study compared and combined the antiremodeling and other effects of induced pluripotent stem cell and mesenchymoangioblast-derived mesenchymal stem cells (MCA-MSCs) with the corticosteroid dexamethasone (Dex) in experimental chronic AAD/asthma. Female BALB/c mice subjected to 11 wk of ovalbumin (Ova)-induced chronic AAD were intranasally administered MCA-MSCs (1 × 106 cells/mouse; once weekly on wk 10 and 11), Dex (0.5 mg/ml; once daily for 2 wk), or both combined. MCA-MSC detection and changes in airway inflammation (AI), AWR, and airway hyperresponsiveness (AHR) were measured at the end of wk 11. Mice with chronic AAD had significant AI, goblet cell metaplasia, epithelial damage/thickening, aberrant TGF-ß1 levels, subepithelial myofibroblast accumulation, airway/lung fibrosis, and AHR (all P < 0.001 vs. healthy controls). MCA-MSCs were detected in the lungs up to 5-7 d postadministration and demonstrated modest anti-inflammatory but striking antifibrotic effects against Ova-induced AAD, effectively decreasing AHR by 70-75% (all P < 0.05 vs. Ova alone). In comparison, Dex predominantly demonstrated anti-inflammatory effects, decreasing AHR by ∼30%. Combining MCA-MSCs with Dex provided equivalent protection to that offered by either therapy alone. MCA-MSCs reduce chronic AAD-induced AWR and AHR to a greater extent than Dex and may act as a suitable adjunct therapy to corticosteroid treatment of asthma.-Royce, S. G., Mao, W., Lim, R., Kelly, K., Samuel, C. S. iPSC- and mesenchymoangioblast-derived mesenchymal stem cells provide greater protection against experimental chronic allergic airways disease compared with a clinically used corticosteroid.


Assuntos
Asma , Células-Tronco Pluripotentes Induzidas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Asma/imunologia , Asma/patologia , Asma/prevenção & controle , Dexametasona/farmacologia , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/transplante , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos BALB C
20.
Cardiovasc Res ; 115(4): 776-787, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30357309

RESUMO

AIMS: Renal inflammation, leading to fibrosis and impaired function is a major contributor to the development of hypertension. The NLRP3 inflammasome mediates inflammation in several chronic diseases by processing the cytokines pro-interleukin (IL)-1ß and pro-IL-18. In this study, we investigated whether MCC950, a recently-identified inhibitor of NLRP3 activity, reduces blood pressure (BP), renal inflammation, fibrosis and dysfunction in mice with established hypertension. METHODS AND RESULTS: C57BL6/J mice were made hypertensive by uninephrectomy and treatment with deoxycorticosterone acetate (2.4 mg/day, s.c.) and 0.9% NaCl in the drinking water (1K/DOCA/salt). Normotensive controls were uninephrectomized and received normal drinking water. Ten days later, mice were treated with MCC950 (10 mg/kg/day, s.c.) or vehicle (saline, s.c.) for up to 25 days. BP was monitored by tail-cuff or radiotelemetry; renal function by biochemical analysis of 24-h urine collections; and kidney inflammation/pathology was assessed by real-time PCR for inflammatory gene expression, flow cytometry for leucocyte influx, and Picrosirius red histology for collagen. Over the 10 days post-surgery, 1K/DOCA/salt-treated mice became hypertensive, developed impaired renal function, and displayed elevated renal levels of inflammatory markers, collagen and immune cells. MCC950 treatment from day 10 attenuated 1K/DOCA/salt-induced increases in renal expression of inflammasome subunits (NLRP3, ASC, pro-caspase-1) and inflammatory/injury markers (pro-IL-18, pro-IL-1ß, IL-17A, TNF-α, osteopontin, ICAM-1, VCAM-1, CCL2, vimentin), each by 25-40%. MCC950 reduced interstitial collagen and accumulation of certain leucocyte subsets in kidneys of 1K/DOCA/salt-treated mice, including CD206+ (M2-like) macrophages and interferon-gamma-producing T cells. Finally, MCC950 partially reversed 1K/DOCA/salt-induced elevations in BP, urine output, osmolality, [Na+], and albuminuria (each by 20-25%). None of the above parameters were altered by MCC950 in normotensive mice. CONCLUSION: MCC950 was effective at reducing BP and limiting renal inflammation, fibrosis and dysfunction in mice with established hypertension. This study provides proof-of-concept that pharmacological inhibition of the NLRP3 inflammasome is a viable anti-hypertensive strategy.


Assuntos
Anti-Inflamatórios/farmacologia , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Furanos/farmacologia , Hipertensão/prevenção & controle , Rim/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Cloreto de Sódio na Dieta , Sulfonamidas/farmacologia , Albuminúria/etiologia , Albuminúria/metabolismo , Albuminúria/fisiopatologia , Albuminúria/prevenção & controle , Animais , Quimiotaxia de Leucócito/efeitos dos fármacos , Colágeno/metabolismo , Acetato de Desoxicorticosterona , Modelos Animais de Doenças , Fibrose , Compostos Heterocíclicos de 4 ou mais Anéis , Hipertensão/etiologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Indenos , Mediadores da Inflamação/metabolismo , Rim/metabolismo , Rim/patologia , Rim/fisiopatologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nefrectomia , Transdução de Sinais , Sulfonas , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA