Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
J Am Vet Med Assoc ; 262(S1): S109-S120, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631386

RESUMO

OBJECTIVE: To evaluate the effects of a gene transfer approach to IL-1ß inhibition in an equine osteochondral chip fragment model of joint injury using a self-complementary adeno-associated virus with interleukin receptor antagonist transgene cassette (scAAVIL-1ra), as posttraumatic osteoarthritis in horses, similar to people, is a significant clinical problem. ANIMALS: 16 horses were utilized for the study. METHODS: All horses had an osteochondral chip fragment induced arthroscopically in one middle carpal joint while the contralateral joint was sham operated. Eight horses received either scAAVIL-1ra or saline in the osteoarthritis joint. Horses were evaluated over 70 days clinically (lameness, imaging, and biomarker analysis) and euthanized at 70 days and evaluated grossly, with imaging and histopathology. RESULTS: The following findings were statistically significant. Injection of scAAVIL-1ra resulted in high synovial fluid levels of IL-1ra (0.5 to 9 µg/mL) throughout the duration of the experiment (70 days). Over the duration, we observed scAAVIL-1ra to improve lameness (lameness score relative improvement of 1.2 on a scale of 0 to 5), cause suppression of prostaglandin E2 (a relative decline of 30 pg/mL), and result in histological improvement in articular cartilage (decreased chondrocyte loss and chondrone formation) and subchondral bone (less osteochondral splitting and osteochondral lesions). Within the synovial membrane of scAAVIL-1ra-treated joints, we also observed perivascular infiltration with CD3-positive WBCs, suggesting lymphocytic T-cell perivascular infiltration commonly observed with viral transduction. CLINICAL RELEVANCE: These data provide support for further evaluation and optimization of scAAVIL-1ra gene therapy to treat equine osteoarthritis.


Assuntos
Terapia Genética , Doenças dos Cavalos , Proteína Antagonista do Receptor de Interleucina 1 , Osteoartrite , Animais , Cavalos , Osteoartrite/veterinária , Osteoartrite/terapia , Osteoartrite/patologia , Proteína Antagonista do Receptor de Interleucina 1/genética , Doenças dos Cavalos/terapia , Terapia Genética/veterinária , Feminino , Masculino
2.
Mol Ther Methods Clin Dev ; 32(1): 101211, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38435130

RESUMO

Intra-articular adeno-associated virus (AAV) gene therapy has been explored as a potential strategy for joint diseases. However, concerns of low transduction efficacy, off-target expression, and neutralizing antibodies (Nabs) still need to be addressed. In this study, we demonstrated that AAV6 was the best serotype to transduce joints after screening serotypes 1 to 9. To develop a more effective AAV vector, a set of novel AAV capsids were rationally engineered. The mutant AAV62 created by swapping variable region I (VRI) of AAV2 into AAV6 induced a higher transduction efficiency per AAV genome copy number. To further investigate the roles of specific amino acids in the transduction of AAV62 and AAV6, we found out that AAV6D with the deletion of threonine at residue 265 induced a 2-fold higher transduction than AAV6, while the transduction efficiency from AAV6M with the mutation of alanine to glutamine at residue 263 was 10-fold lower. AAV6D efficiently transduced both synoviocytes and chondrocytes with low AAV genome copy numbers in other tissues and less Nab formation. This study demonstrates that novel AAV mutants with rational engineering may enhance joint transduction after intra-articular administration in mice, with the potential to evade AAV Nabs and minimize off-target effects in the liver.

3.
Mol Ther Methods Clin Dev ; 30: 30-47, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37746247

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked disease caused by loss-of-function mutations in the dystrophin gene and is characterized by muscle wasting and early mortality. Adeno-associated virus-mediated gene therapy is being investigated as a treatment for DMD. In the nonclinical study documented here, we determined the effective dose of fordadistrogene movaparvovec, a clinical candidate adeno-associated virus serotype 9 vector carrying a human mini-dystrophin transgene, after single intravenous injection in a dystrophin-deficient (DMDmdx) rat model of DMD. Overall, we found that transduction efficiency, number of muscle fibers expressing the human mini-dystrophin polypeptide, improvement of the skeletal and cardiac muscle tissue architecture, correction of muscle strength and fatigability, and improvement of diastolic and systolic cardiac function were directly correlated with the amount of vector administered. The effective dose was then tested in older DMDmdx rats with a more dystrophic phenotype similar to the pathology observed in older patients with DMD. Except for a less complete rescue of muscle function in the oldest cohort, fordadistrogene movaparvovec was also found to be therapeutically effective in older DMDmdx rats, suggesting that this product may be appropriate for evaluation in patients with DMD at all stages of disease.

4.
Front Vet Sci ; 9: 962898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246316

RESUMO

With an intrinsically low ability for self-repair, articular cartilage injuries often progress to cartilage loss and joint degeneration resulting in osteoarthritis (OA). Osteoarthritis and the associated articular cartilage changes can be debilitating, resulting in lameness and functional disability both in human and equine patients. While articular cartilage damage plays a central role in the pathogenesis of OA, the contribution of other joint tissues to the pathogenesis of OA has increasingly been recognized thus prompting a whole organ approach for therapeutic strategies. Gene therapy methods have generated significant interest in OA therapy in recent years. These utilize viral or non-viral vectors to deliver therapeutic molecules directly into the joint space with the goal of reprogramming the cells' machinery to secrete high levels of the target protein at the site of injection. Several viral vector-based approaches have demonstrated successful gene transfer with persistent therapeutic levels of transgene expression in the equine joint. As an experimental model, horses represent the pathology of human OA more accurately compared to other animal models. The anatomical and biomechanical similarities between equine and human joints also allow for the use of similar imaging and diagnostic methods as used in humans. In addition, horses experience naturally occurring OA and undergo similar therapies as human patients and, therefore, are a clinically relevant patient population. Thus, further studies utilizing this equine model would not only help advance the field of human OA therapy but also benefit the clinical equine patients with naturally occurring joint disease. In this review, we discuss the advancements in gene therapeutic approaches for the treatment of OA with the horse as a relevant patient population as well as an effective and commonly utilized species as a translational model.

5.
Hum Gene Ther ; 33(21-22): 1142-1156, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36082996

RESUMO

AAV virion biology is still lacking a complete understanding of the role that the various structural subunits (VP1, 2, and 3) play in virus assembly, infectivity, and therapeutic delivery for clinical indications. In this study, we focus on the less studied adeno-associated virus AAV3B and generate a collection of AAV plasmid substrates that assemble virion particles deficient specifically in VP1, VP2, or VP1 and 2 structural subunits. Using a collection of biological and structural assays, we observed that virions devoid of VP1, VP2, or VP1 and 2 efficiently assembled virion particles, indistinguishable by cryoelectron microscopy (cryo-EM) from that of wild type (WT), but unique in virion transduction (WT > VP2 > VP1 > VP1 and 2 mutants). We also observed that the missing structural subunit was mostly compensated by additional VP3 protomers in the formed virion particle. Using cryo-EM analysis, virions fell into three classes, namely full, empty, and partially filled, based on comparison of density values within the capsid. Further, we characterize virions described as "broken" or "disassembled" particles, and provide structural information that supports the particle dissolution occurring through the two-fold symmetry sites. Finally, we highlight the unique value of employing cryo-EM as an essential tool for release criteria with respect to AAV manufacturing.


Assuntos
Capsídeo , Dependovirus , Humanos , Sorogrupo , Microscopia Crioeletrônica , Dependovirus/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Vírion/genética , Células HeLa
7.
Front Pharmacol ; 13: 815317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173619

RESUMO

Adeno-associated virus (AAV) mediated gene therapy has been successfully applied in clinical trials, including hemophilia. Novel AAV vectors have been developed with enhanced transduction and specific tissue tropism. Considering the difference in efficacy of AAV transduction between animal models and patients, the chimeric xenograft mouse model with human hepatocytes has unique advantages of studying AAV transduction efficiency in human hepatocytes. However, it is unclear whether the results in humanized mice can predict AAV transduction efficiency in human hepatocytes. To address this issue, we studied the AAV transduction efficacy in canine hepatocytes in both canine hepatocyte xenografted mice and real dogs. After administration of AAV vectors from different serotypes into canine hepatocyte xenograft mice, AAV8 induced the best canine hepatocyte transduction followed by AAV9, then AAV3, 7, 5 and 2. After administration of AAV/cFIX (cFIX-opt-R338L) vectors in hemophilia B dogs, consistent with the result in chimeric mice, AAV8 induced the highest cFIX protein expression and function, followed by AAV9 and then AAV2. These results suggest that mice xenografted with hepatocytes from different species could be used to predict the AAV liver transduction in real species and highlight this potential platform to explore novel AAV variants for future clinical applications.

8.
Biomaterials ; 281: 121340, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34998171

RESUMO

Recombinant adeno-associated virus (rAAV) vectors have been widely used as favored delivery vehicles for the treatment of inherited diseases in clinical trials, including neurological diseases. However, the noninvasive systemic delivery of rAAV to the central nervous system is severely hampered by the blood-brain barrier (BBB). Several approaches have been exploited to enhance AAV vector brain transduction after systemic administration, including genetic modification of AAV capsids and physical methods. However, these approaches are not always predictive of desirable outcomes in humans and induce complications. It is imperative to explore novel strategies to increase the ability of AAV9 to cross the BBB for enhanced brain transduction. Herein, we have conducted a combinatorial in vivo/in vitro phage display library screening in mouse brains and purified AAV9 virions to identify a customized BBB shuttle peptide, designated as PB5-3. The PB5-3 peptide specifically bound to AAV9 virions and enhanced widespread transduction of AAV9 in mouse brains, especially in neuronal cells, after systemic administration. Further study demonstrated that systemic administration of AAV9 vectors encoding IDUA complexed with PB5-3 increased the phenotypic correction in the brains of MPS I mice. Mechanistic studies revealed that the PB5-3 peptide effectively increased AAV9 trafficking and transcytosis efficiency in the human BBB model hCMEC/D3 cell line but did not interfere with AAV9 binding to the receptor terminal N-linked galactosylated glycans. Additionally, the PB5-3 peptide slowed the clearance of AAV9 from blood without hepatic toxicity. This study highlights, for the first time, the potential of this combinatorial approach for the isolation of peptides that interact with specific AAV vectors for enhanced and targeted AAV transduction. This promising approach will open new combined therapeutic avenues and shed light on the potential applications of peptides for the treatment of human diseases in future clinical trials with AAV vector-mediated gene delivery.


Assuntos
Barreira Hematoencefálica , Vetores Genéticos , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Dependovirus/genética , Técnicas de Transferência de Genes , Camundongos , Peptídeos/metabolismo , Transdução Genética
9.
Front Vet Sci ; 9: 1117776, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686173

RESUMO

[This corrects the article DOI: 10.3389/fvets.2022.962898.].

12.
Mol Ther Methods Clin Dev ; 20: 520-534, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33614826

RESUMO

Recent advances in adeno-associated viral (AAV) capsid variants with novel oligotropism require validation in models of disease in order to be viable candidates for white matter disease gene therapy. We present here an assessment of the biodistribution, tropism, and efficacy of a novel AAV capsid variant (AAV/ Olig001) in a model of Canavan disease. We first define a combination of dose and route of administration of an AAV/Olig001-GFP reporter conducive to widespread CNS oligodendrocyte transduction in acutely symptomatic animals that model the Canavan brain at time of diagnosis. Administration of AAV/Olig001-GFP resulted in >70% oligotropism in all regions of interest except the cerebellum without the need for lineage-specific expression elements. Intracerebroventricular infusion into the cerebrospinal fluid (CSF) was identified as the most appropriate route of administration and employed for delivery of an AAV/Olig001 vector to reconstitute oligodendroglial aspartoacylase (ASPA) in adult Canavan mice, which resulted in a dose-dependent rescue of ASPA activity, motor function, and a near-total reduction in vacuolation. A head-to-head efficacy comparison with astrogliotropic AAV9 highlighted a significant advantage conferred by oligotropic AAV/Olig001 that was independent of overall transduction efficiency. These results support the continued development of AAV/Olig001 for advancement to clinical application to white matter disease.

13.
Blood ; 137(6): 763-774, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33067633

RESUMO

Gene therapy has the potential to maintain therapeutic blood clotting factor IX (FIX) levels in patients with hemophilia B by delivering a functional human F9 gene into liver cells. This phase 1/2, open-label dose-escalation study investigated BAX 335 (AskBio009, AAV8.sc-TTR-FIXR338Lopt), an adeno-associated virus serotype 8 (AAV8)-based FIX Padua gene therapy, in patients with hemophilia B. This report focuses on 12-month interim analyses of safety, pharmacokinetic variables, effects on FIX activity, and immune responses for dosed participants. Eight adult male participants (aged 20-69 years; range FIX activity, 0.5% to 2.0%) received 1 of 3 BAX 335 IV doses: 2.0 × 1011; 1.0 × 1012; or 3.0 × 1012 vector genomes/kg. Three (37.5%) participants had 4 serious adverse events, all considered unrelated to BAX 335. No serious adverse event led to death. No clinical thrombosis, inhibitors, or other FIX Padua-directed immunity was reported. FIX expression was measurable in 7 of 8 participants; peak FIX activity displayed dose dependence (32.0% to 58.5% in cohort 3). One participant achieved sustained therapeutic FIX activity of ∼20%, without bleeding or replacement therapy, for 4 years; in others, FIX activity was not sustained beyond 5 to 11 weeks. In contrast to some previous studies, corticosteroid treatment did not stabilize FIX activity loss. We hypothesize that the loss of transgene expression could have been caused by stimulation of innate immune responses, including CpG oligodeoxynucleotides introduced into the BAX 335 coding sequence by codon optimization. This trial was registered at www.clinicaltrials.gov as #NCT01687608.


Assuntos
Ilhas de CpG/genética , Fator IX/uso terapêutico , Regulação da Expressão Gênica , Terapia Genética , Hemofilia B/terapia , Proteínas Recombinantes de Fusão/uso terapêutico , Adolescente , Adulto , Idoso , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fator IX/biossíntese , Fator IX/genética , Mutação com Ganho de Função , Hemofilia B/genética , Hemofilia B/imunologia , Humanos , Imunidade Inata , Masculino , Pessoa de Meia-Idade , Moléculas com Motivos Associados a Patógenos/imunologia , Estudos Prospectivos , Rabdomiólise/etiologia , Receptor Toll-Like 9/fisiologia , Transgenes , Adulto Jovem
14.
PLoS One ; 15(11): e0242599, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33227033

RESUMO

Sensorineural hearing loss is one of the most common disabilities worldwide. Such prevalence necessitates effective tools for studying the molecular workings of cochlear cells. One prominent and effective vector for expressing genes of interest in research models is adeno-associated virus (AAV). However, AAV efficacy in transducing cochlear cells can vary for a number of reasons including serotype, species, and methodology, and oftentimes requires high multiplicity of infection which can damage the sensory cells. Reports in other systems suggest multiple approaches can be used to enhance AAV transduction including self-complementary vector design and pharmacological inhibition of degradation. Here we produced AAV to drive green fluorescent protein (GFP) expression in explanted neonatal mouse cochleae. Treatment with eeyarestatin I, tyrphostin 23, or lipofectamine 2000 did not result in increased transduction, however, self-complementary vector design resulted in significantly more GFP positive cells when compared to single-stranded controls. Similarly, self-complementary AAV2 vectors demonstrated enhanced transduction efficiency compared to single stranded AAV2 when injected via the posterior semicircular canal, in vivo. Self-complementary vectors for AAV1, 8, and 9 serotypes also demonstrated robust GFP transduction in cochlear cells in vivo, though these were not directly compared to single stranded vectors. These findings suggest that second-strand synthesis may be a rate limiting step in AAV transduction of cochlear tissues and that self-complementary AAV can be used to effectively target large numbers of cochlear cells in vitro and in vivo.


Assuntos
Cóclea/metabolismo , Dependovirus/genética , Transdução Genética/métodos , Animais , Animais Recém-Nascidos , Linhagem Celular Tumoral , Cóclea/virologia , Feminino , Expressão Gênica , Engenharia Genética/métodos , Terapia Genética/métodos , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sorogrupo , Transgenes/genética
15.
Hum Gene Ther ; 31(21-22): 1146-1154, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32940063

RESUMO

Recombinant adeno-associated virus (rAAV) vectors have become one of the most promising and efficacious delivery vehicles for human gene therapy; however, low infectivity remains a major ongoing obstacle in the clinical application of rAAV vectors. Multiple strategies, including rAAV capsid modification and the application of pharmacological reagents, have been explored to enhance rAAV vector gene delivery. Recently, a new strategy using native proteins or various peptides has shown promise for increasing rAAV transduction locally or globally. This review summarizes the current status of protein- and peptide-based strategies and mechanisms to modulate rAAV transduction. We also provide a potential insight regarding the design of effective approaches for rAAV transduction enhancement in future clinical studies.


Assuntos
Proteínas de Transporte/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Terapia Genética/métodos , Vetores Genéticos/genética , Fragmentos de Peptídeos/metabolismo , Transdução Genética , Humanos
16.
Hum Gene Ther ; 31(21-22): 1155-1168, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32940068

RESUMO

Recently, we established an adeno-associated virus (AAV9) capsid-promoter interaction that directly determined cell-specific gene expression across two synthetic promoters, Cbh and CBA, in the rat striatum. These studies not only expand this capsid-promoter interaction to include another promoter in the rat striatum but also establish AAV capsid-promoter interactions in the nonhuman primate brain. When AAV serotype 9 (AAV9) vectors were injected into the rat striatum, the minimal synthetic promoter JetI drove green fluorescent protein (GFP) gene expression predominantly in oligodendrocytes. However, similar to our previous findings, the insertion of six alanines into VP1/VP2 of the AAV9 capsid (AAV9AU) significantly shifted JetI-driven GFP gene expression to neurons. In addition, previous retrograde tracing studies in the nonhuman primate brain also revealed the existence of a capsid-promoter interaction. When rAAV2-Retro vectors were infused into the frontal eye field (FEF) of rhesus macaques, local gene expression was prominent using either the hybrid chicken beta actin (CAG) or human synapsin (hSyn) promoters. However, only the CAG promoter, not the hSyn promoter, led to gene expression in the ipsilateral claustrum and contralateral FEF. Conversely, infusion of rAAV2-retro-hSyn vectors, but not rAAV2-retro-CAG, into the macaque superior colliculus led to differential and selective retrograde gene expression in cerebellotectal afferent cells. Clearly, this differential promoter/capsid expression profile could not be attributed to promoter inactivation from retrograde transport of the rAAV2-Retro vector. In summary, we document the potential for AAV capsid/promoter interactions to impact cell-specific gene expression across species, experimental manipulations, and engineered capsids, independent of capsid permissivity.


Assuntos
Encéfalo/metabolismo , Capsídeo/metabolismo , Dependovirus/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Regiões Promotoras Genéticas , Transgenes , Animais , Dependovirus/genética , Macaca mulatta , Masculino , Ratos , Ratos Sprague-Dawley
17.
Hum Gene Ther ; 31(19-20): 1054-1067, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32829671

RESUMO

Recombinant adeno-associated viral (rAAV) vector mobilization is a largely theoretical process in which intact AAV vectors spread or "mobilize" from transduced cells and infect additional cells within, or external of, the initial host. This process can be helper virus-independent (vector alone) or helper virus-dependent (de novo rAAV production facilitated by superinfection of both wild-type AAV [wtAAV] and Adenovirus 5 [Ad] helper virus). Herein, rAAV production and mobilization with and without wtAAV were analyzed following plasmid transfection or viral transduction utilizing well-established in vitro conditions and analytical measurements. During in vitro production, wtAAV produced the highest titer with rAAV-luc (4.1 kb), rAAV-IDUA (3.7 kb), and rAAV-Nano-dysferlin (4.9 kb) generating 2.5-, 5.9-, or 10.7-fold lower amounts, respectively. Surprisingly, cotransfection of a wtAAV and an rAAV plasmid resulted in a uniform decrease in production of wtAAV in all instances with a concomitant increase of rAAV such that wtAAV:rAAV titers were at a ratio of 1:1 for all constructs investigated. These results were shown to be independent of the rAAV transgenic sequence, size, transgene, or promoter choice and point to novel aspects of wtAAV complementation that enhance current vector production systems yet to be defined. In a mobilization assay, a sizeable amount of rAAV recovered from infected 293 cell lysate remained intact and competent for a secondary round of infection (termed Ad-independent mobilization). In rAAV-infected cells coinfected with Ad and wtAAV, rAAV particle production was increased >50-fold compared with no Ad conditions. In addition, Ad-dependent rAAV vectors mobilized and resulted in >1,000-fold transduction upon a subsequent second-round infection, highlighting the reality of these theoretical safety concerns that can be manifested under various conditions. Overall, these studies document and signify the need for mobilization-resistant vectors and the opportunity to derive better vector production systems.


Assuntos
Adenoviridae/genética , Replicação do DNA , DNA Viral/genética , Dependovirus/fisiologia , Vetores Genéticos/administração & dosagem , Recombinação Genética , Montagem de Vírus , Vetores Genéticos/genética , Células HeLa , Humanos
18.
Mol Ther Methods Clin Dev ; 18: 259-268, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32637455

RESUMO

Adeno-associated virus (AAV) vectors have been successfully used in patients with bleeding disorders and blindness. For human liver targeting, two major factors restrict effective AAV transduction after systemic administration of AAV vectors: human hepatocyte tropism and neutralizing antibodies (Nabs). In this study, we attempted to isolate AAV variants with the ability to transduce human hepatocytes and escape Nabs using a directed evolution approach in vivo. After four cycles of selection, 14 AAV capsid mutants were identified from a capsid shuffling library selected in the presence of human Intravenous Immunoglobulin (IVIG) and isolated from human hepatocytes xenografted into chimeric mice. AAV neutralization assays using IVIG showed that most of the mutants showed the Nab escape pattern in a manner similar to that of AAV8 or AAV9 and better than that of other AAV serotypes. Different mutants displayed varying capacities to escape Nab activity from individual serum samples collected from healthy subjects or hemophilia patients. The mutant AAV LP2-10 was found in 12 colonies out of 25, which was composed of capsids from AAV serotypes 2, 6, 8, and 9, with VP3 subunits derived from AAV8 swapped with AAV6 from residues 261 to 272. The mutant AAV LP2-10 manifested a higher ability than that of other serotypes to escape Nabs in IVIG and most human serum samples. After injection of AAV vectors encoding a self-complementary GFP cassette into chimeric mice, LP2-10 transduced human hepatocytes with efficiency similar to that of AAV8. In summary, AAV mutants can be isolated in humanized mice with both human hepatocyte tropism and the ability to evade Nab activity.

19.
Mol Ther ; 28(6): 1455-1463, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32330426

RESUMO

Mucopolysaccharidosis type I (MPS I) is an autosomal recessive lysosomal storage disease characterized by severe phenotypes, including corneal clouding. MPS I is caused by mutations in alpha-l-iduronidase (IDUA), a ubiquitous enzyme that catalyzes the hydrolysis of glycosaminoglycans. Currently, no treatment exists to address MPS I corneal clouding other than corneal transplantation, which is complicated by a high risk for rejection. Investigation of an adeno-associated virus (AAV) IDUA gene addition strategy targeting the corneal stroma addresses this deficiency. In MPS I canines with early or advanced corneal disease, a single intrastromal AAV8G9-IDUA injection was well tolerated at all administered doses. The eyes with advanced disease demonstrated resolution of corneal clouding as early as 1 week post-injection, followed by sustained corneal transparency until the experimental endpoint of 25 weeks. AAV8G9-IDUA injection in the MPS I canine eye with early corneal disease prevented the development of advanced corneal changes while restoring clarity. Biodistribution studies demonstrated vector genomes in ocular compartments other than the cornea and in some systemic organs; however, a capsid antibody response was detected in only the highest dosed subject. Collectively, the results suggest that intrastromal AAV8G9-IDUA therapy prevents and reverses visual impairment associated with MPS I corneal clouding.


Assuntos
Doenças da Córnea/etiologia , Doenças da Córnea/terapia , Técnicas de Transferência de Genes , Terapia Genética , Mucopolissacaridose I/complicações , Mucopolissacaridose I/genética , Animais , Animais Geneticamente Modificados , Doenças da Córnea/diagnóstico , Dependovirus/genética , Modelos Animais de Doenças , Cães , Feminino , Imunofluorescência , Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Reporter , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Iduronidase/genética , Masculino , Transgenes , Resultado do Tratamento
20.
Mol Ther ; 28(5): 1373-1380, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32213322

RESUMO

Cell-selective gene expression comprises a critical element of many adeno-associated virus (AAV) vector-based gene therapies, and to date achieving this goal has focused on AAV capsid engineering, cell-specific promoters, or cell-specific enhancers. Recently, we discovered that the capsid of AAV9 exerts a differential influence on constitutive promoters of sufficient magnitude to alter cell type gene expression in the rat CNS. For AAV9 vectors chicken ß-actin (CBA) promoter-driven gene expression exhibited a dominant neuronal gene expression in the rat striatum. Surprisingly, for otherwise identical AAV9 vectors, the truncated CBA hybrid (CBh) promoter shifted gene expression toward striatal oligodendrocytes. In contrast, AAV2 vector gene expression was restricted to striatal neurons, regardless of the constitutive promoter used. Furthermore, a six-glutamate residue insertion immediately after the VP2 start residue shifted CBA-driven cellular gene expression from neurons to oligodendrocytes. Conversely, a six-alanine insertion in the same AAV9 capsid region reversed the CBh-mediated oligodendrocyte expression back to neurons without changing AAV9 capsid access to oligodendrocytes. Given the preponderance of AAV9 in ongoing clinical trials and AAV capsid engineering, this AAV9 capsid-promoter interaction reveals a previously unknown novel contribution to cell-selective AAV-mediated gene expression in the CNS.


Assuntos
Proteínas do Capsídeo/genética , Capsídeo/metabolismo , Corpo Estriado/metabolismo , Dependovirus/genética , Expressão Gênica , Neurônios/metabolismo , Regiões Promotoras Genéticas , Animais , Terapia Genética , Vetores Genéticos , Células HEK293 , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Transdução Genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA