Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Genet ; 59(4): 197-206, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24114446

RESUMO

In the yeast Saccharomyces cerevisiae several nutrient transporters have been identified that possess an additional function as nutrient receptor. These transporters are induced when yeast cells are starved for their substrate, which triggers entry into stationary phase and acquirement of a low protein kinase A (PKA) phenotype. Re-addition of the lacking nutrient triggers exit from stationary phase and sudden activation of the PKA pathway, the latter being mediated by the nutrient transceptors. At the same time, the transceptors are ubiquitinated, endocytosed and sorted to the vacuole for breakdown. Investigation of the signaling function of the transceptors has provided a new read-out and new tools for gaining insight into the functionality of transporters. Identification of amino acid residues that bind co-transported ions in symporters has been challenging because the inactivation of transport by site-directed mutagenesis is not conclusive with respect to the cause of the inactivation. The discovery of nontransported agonists of the signaling function in transceptors has shown that transport is not required for signaling. Inactivation of transport with maintenance of signaling in transceptors supports that a true proton-binding residue was mutagenised. Determining the relationship between transport and induction of endocytosis has also been challenging, since inactivation of transport by mutagenesis easily causes loss of all affinity for the substrate. The use of analogues with different combinations of transport and signaling capacities has revealed that transport, ubiquitination and endocytosis can be uncoupled in several unexpected ways. The results obtained are consistent with transporters undergoing multiple substrate-induced conformational changes, which allow interaction with different accessory proteins to trigger specific downstream events.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Conformação Proteica , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Endocitose/fisiologia , Proteínas de Membrana Transportadoras/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosfatos/química , Fosfatos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sódio/metabolismo , Ubiquitinação
2.
BMC Biochem ; 13: 11, 2012 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-22726655

RESUMO

BACKGROUND: The Gtr1 protein of Saccharomyces cerevisiae is a member of the RagA subfamily of the Ras-like small GTPase superfamily. Gtr1 has been implicated in various cellular processes. Particularly, the Switch regions in the GTPase domain of Gtr1 are essential for TORC1 activation and amino acid signaling. Therefore, knowledge about the biochemical activity of Gtr1 is required to understand its mode of action and regulation. RESULTS: By employing tryptophan fluorescence analysis and radioactive GTPase assays, we demonstrate that Gtr1 can adopt two distinct GDP- and GTP-bound conformations, and that it hydrolyses GTP much slower than Ras proteins. Using cysteine mutagenesis of Arginine-37 and Valine-67, residues at the Switch I and II regions, respectively, we show altered GTPase activity and associated conformational changes as compared to the wild type protein and the cysteine-less mutant. CONCLUSIONS: The extremely low intrinsic GTPase activity of Gtr1 implies requirement for interaction with activating proteins to support its physiological function. These findings as well as the altered properties obtained by mutagenesis in the Switch regions provide insights into the function of Gtr1 and its homologues in yeast and mammals.


Assuntos
Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Espectrofotometria Ultravioleta
3.
Biochem J ; 445(3): 413-22, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22587366

RESUMO

In Saccharomyces cerevisiae, the Pho84 phosphate transporter acts as the main provider of phosphate to the cell using a proton symport mechanism, but also mediates rapid activation of the PKA (protein kinase A) pathway. These two features led to recognition of Pho84 as a transceptor. Although the physiological role of Pho84 has been studied in depth, the mechanisms underlying the transport and sensor functions are unclear. To obtain more insight into the structure-function relationships of Pho84, we have rationally designed and analysed site-directed mutants. Using a three-dimensional model of Pho84 created on the basis of the GlpT permease, complemented with multiple sequence alignments, we selected Arg(168) and Lys(492), and Asp(178), Asp(358) and Glu(473) as residues potentially involved in phosphate or proton binding respectively, during transport. We found that Asp(358) (helix 7) and Lys(492) (helix 11) are critical for the transport function, and might be part of the putative substrate-binding pocket of Pho84. Moreover, we show that alleles mutated in the putative proton-binding site Asp(358) are still capable of strongly activating PKA pathway targets, despite their severely reduced transport activity. This indicates that signalling does not require transport and suggests that mutagenesis of amino acid residues involved in binding of the co-transported ion may constitute a promising general approach to separate the transport and signalling functions in transceptors.


Assuntos
Simportadores de Próton-Fosfato/genética , Simportadores de Próton-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , DNA Fúngico/genética , Genes Fúngicos , Cinética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosfatos/metabolismo , Simportadores de Próton-Fosfato/química , Prótons , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos , Transdução de Sinais
4.
Biochemistry ; 48(21): 4497-505, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19348508

RESUMO

In Saccharomyces cerevisiae, phosphate uptake is mainly dependent on the proton-coupled Pho84 permease under phosphate-limited growth conditions. Phosphate addition causes Pho84-mediated activation of the protein kinase A (PKA) pathway as well as rapid internalization and vacuolar breakdown of Pho84. We show that Pho84 undergoes phosphate-induced phosphorylation and subsequent ubiquitination on amino acids located in the large middle intracellular loop prior to endocytosis. The attachment of ubiquitin is dependent on the ubiquitin conjugating enzymes Ubc2 and Ubc4. In addition, we show that the Pho84 endocytotic process is delayed in strains with reduced PKA activity. Our results suggest that Pho84-mediated activation of the PKA pathway is responsible for its own downregulation by phosphorylation, ubiquination, internalization, and vacuolar breakdown.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Fosfatos/farmacologia , Simportadores de Próton-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Retroalimentação Fisiológica , Espaço Intracelular/metabolismo , Fosfatos/metabolismo , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Simportadores de Próton-Fosfato/química , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química , Transdução de Sinais/efeitos dos fármacos , Ubiquitina/metabolismo , Regulação para Cima/efeitos dos fármacos
5.
FEMS Yeast Res ; 8(5): 685-96, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18625026

RESUMO

The Na(+)-coupled, high-affinity Pho89 plasma membrane phosphate transporter in Saccharomyces cerevisiae has so far been difficult to study because of its low activity and special properties. In this study, we have used a pho84Deltapho87Deltapho90Deltapho91Delta quadruple deletion strain of S. cerevisiae devoid of all transporter genes specific for inorganic phosphate, except for PHO89, to functionally characterize Pho89 under conditions where its expression is hyperstimulated. Under these conditions, the Pho89 protein is strongly upregulated and is the sole high-capacity phosphate transporter sustaining cellular acquisition of inorganic phosphate. Even if Pho89 is synthesized in cells grown at pH 4.5-8.0, the transporter is functionally active under alkaline conditions only, with a K(m) value reflecting high-affinity properties of the transporter and with a transport rate about 100-fold higher than that of the protein in a wild-type strain. Even under these hyperexpressive conditions, Pho89 is unable to sense and signal extracellular phosphate levels. In cells grown at pH 8.0, Pho89-mediated phosphate uptake at alkaline pH is cation-dependent with a strong activation by Na(+) ions and sensitivity to carbonyl cyanide m-chlorophenylhydrazone. The contribution of H(+)- and Na(+)-coupled phosphate transport systems in wild-type cells grown at different pH values was quantified. The contribution of the Na(+)-coupled transport system to the total cellular phosphate uptake activity increases progressively with increasing pH.


Assuntos
Dosagem de Genes , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Deleção de Genes , Concentração de Íons de Hidrogênio , Cinética , Proteínas de Transporte de Fosfato/genética , Fosfatos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Sódio/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Desacopladores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA