Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 84(4): 659-674.e7, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266640

RESUMO

Inactivating mutations in the BRCA1 and BRCA2 genes impair DNA double-strand break (DSB) repair by homologous recombination (HR), leading to chromosomal instability and cancer. Importantly, BRCA1/2 deficiency also causes therapeutically targetable vulnerabilities. Here, we identify the dependency on the end resection factor EXO1 as a key vulnerability of BRCA1-deficient cells. EXO1 deficiency generates poly(ADP-ribose)-decorated DNA lesions during S phase that associate with unresolved DSBs and genomic instability in BRCA1-deficient but not in wild-type or BRCA2-deficient cells. Our data indicate that BRCA1/EXO1 double-deficient cells accumulate DSBs due to impaired repair by single-strand annealing (SSA) on top of their HR defect. In contrast, BRCA2-deficient cells retain SSA activity in the absence of EXO1 and hence tolerate EXO1 loss. Consistent with a dependency on EXO1-mediated SSA, we find that BRCA1-mutated tumors show elevated EXO1 expression and increased SSA-associated genomic scars compared with BRCA1-proficient tumors. Overall, our findings uncover EXO1 as a promising therapeutic target for BRCA1-deficient tumors.


Assuntos
Proteína BRCA1 , Neoplasias , Humanos , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Dano ao DNA , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Recombinação Homóloga
2.
Nat Cell Biol ; 23(6): 595-607, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34108663

RESUMO

Cells employ transcription-coupled repair (TCR) to eliminate transcription-blocking DNA lesions. DNA damage-induced binding of the TCR-specific repair factor CSB to RNA polymerase II (RNAPII) triggers RNAPII ubiquitylation of a single lysine (K1268) by the CRL4CSA ubiquitin ligase. How CRL4CSA is specifically directed towards K1268 is unknown. Here, we identify ELOF1 as the missing link that facilitates RNAPII ubiquitylation, a key signal for the assembly of downstream repair factors. This function requires its constitutive interaction with RNAPII close to K1268, revealing ELOF1 as a specificity factor that binds and positions CRL4CSA for optimal RNAPII ubiquitylation. Drug-genetic interaction screening also revealed a CSB-independent pathway in which ELOF1 prevents R-loops in active genes and protects cells against DNA replication stress. Our study offers key insights into the molecular mechanisms of TCR and provides a genetic framework of the interplay between transcriptional stress responses and DNA replication.


Assuntos
Dano ao DNA , Reparo do DNA , Fator 1 de Elongação de Peptídeos/metabolismo , RNA Polimerase II/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , DNA Helicases/genética , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Humanos , Fator 1 de Elongação de Peptídeos/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Polimerase II/genética , Elongação da Transcrição Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética
3.
Nucleic Acids Res ; 49(9): 4848-4863, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33755171

RESUMO

R-loops are RNA:DNA hybrids assembled during biological processes but are also linked to genetic instability when formed out of their natural context. Emerging evidence suggests that the repair of DNA double-strand breaks requires the formation of a transient R-loop, which eventually must be removed to guarantee a correct repair process. The multifaceted BRCA1 protein has been shown to be recruited at this specific break-induced R-loop, and it facilitates mechanisms in order to regulate R-loop removal. In this review, we discuss the different potential roles of BRCA1 in R-loop homeostasis during DNA repair and how these processes ensure faithful DSB repair.


Assuntos
Proteína BRCA1/fisiologia , Reparo do DNA , Estruturas R-Loop , Proteína BRCA1/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Replicação do DNA , Transcrição Gênica
4.
Microb Cell ; 7(7): 190-198, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32656258

RESUMO

The stability and function of eukaryotic genomes is closely linked to histones and to chromatin structure. The state of the chromatin not only affects the probability of DNA to undergo damage but also DNA repair. DNA damage can result in genetic alterations and subsequent development of cancer and other genetic diseases. Here, we identified two mutations in conserved residues of histone H3 and histone H4 (H3E73Q and H4E53A) that increase recombinogenic DNA damage. Our results suggest that the accumulation of DNA damage in these histone mutants is largely independent on transcription and might arise as a consequence of problems occurring during DNA replication. This study uncovers the relevance of H3E73 and H4E53 residues in the protection of genome integrity.

5.
Mol Cancer Res ; 17(3): 773-782, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30552231

RESUMO

R-loops are a major source of replication stress, DNA damage, and genome instability, which are major hallmarks of cancer cells. Accordingly, growing evidence suggests that R-loops may also be related to cancer. Here we show that R-loops play an important role in the cellular response to trabectedin (ET743), an anticancer drug from marine origin and its derivative lurbinectedin (PM01183). Trabectedin and lurbinectedin induced RNA-DNA hybrid-dependent DNA damage in HeLa cells, causing replication impairment and genome instability. We also show that high levels of R-loops increase cell sensitivity to trabectedin. In addition, trabectedin led to transcription-dependent FANCD2 foci accumulation, which was suppressed by RNase H1 overexpression. In yeast, trabectedin and lurbinectedin increased the presence of Rad52 foci, a marker of DNA damage, in an R-loop-dependent manner. In addition to providing new insights into the mechanisms of action of these drugs, our study reveals that R-loops could be targeted by anticancer agents. Given the increasing evidence that R-loops occur all over the genome, the ability of lurbinectedin and trabectedin to act on them may contribute to enhance their efficacy, opening the possibility that R-loops might be a feature shared by specific cancers. IMPLICATIONS: The data presented in this study provide the new concept that R-loops are important cellular factors that contribute to trabectedin and lurbinectedin anticancer activity.


Assuntos
Carbolinas/uso terapêutico , Replicação do DNA/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Trabectedina/uso terapêutico , Carbolinas/farmacologia , Proliferação de Células , Instabilidade Genômica , Células HeLa , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Trabectedina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA