Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 20(1): 354, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31072350

RESUMO

BACKGROUND: Evolution leaves an imprint in species through genetic change. At the molecular level, evolutionary changes can be explored by studying ratios of nucleotide substitutions. The interplay among molecular evolution, derived phenotypes, and ecological ranges can provide insights into adaptive radiations. Caecilians (order Gymnophiona), probably the least known of the major lineages of vertebrates, are limbless tropical amphibians, with adults of most species burrowing in soils (fossoriality). This enigmatic order of amphibians are very distinct phenotypically from other extant amphibians and likely from the ancestor of Lissamphibia, but little to nothing is known about the molecular changes underpinning their radiation. We hypothesised that colonization of various depths of tropical soils and of freshwater habitats presented new ecological opportunities to caecilians. RESULTS: A total of 8540 candidate groups of orthologous genes from transcriptomic data of five species of caecilian amphibians and the genome of the frog Xenopus tropicalis were analysed in order to investigate the genetic machinery behind caecilian diversification. We found a total of 168 protein-coding genes with signatures of positive selection at different evolutionary times during the radiation of caecilians. The majority of these genes were related to functional elements of the cell membrane and extracellular matrix with expression in several different tissues. The first colonization of the tropical soils was connected to the largest number of protein-coding genes under positive selection in our analysis. From the results of our study, we highlighted molecular changes in genes involved in perception, reduction-oxidation processes, and aging that likely were involved in the adaptation to different soil strata. CONCLUSIONS: The genes inferred to have been under positive selection provide valuable insights into caecilian evolution, potentially underpin adaptations of caecilians to their extreme environments, and contribute to a better understanding of fossorial adaptations and molecular evolution in vertebrates.


Assuntos
Proteínas de Anfíbios/genética , Anfíbios/genética , Evolução Molecular , Efeitos da Radiação , Seleção Genética , Proteínas de Anfíbios/efeitos da radiação , Anfíbios/classificação , Animais , Genoma , Anotação de Sequência Molecular , Fenótipo , Filogenia
2.
Mol Phylogenet Evol ; 56(2): 554-61, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20399871

RESUMO

One of the most hotly debated topics in vertebrate evolution is the origin of extant amphibians (Lissamphibia). The recent contribution of molecular data is shedding new light on this debate, but many important questions still remain unresolved. I have assembled a large and comprehensive multilocus dataset (the largest to date in terms of number and heterogeneity of sequence characters) combining mitogenomic and nuclear information from 23 genes for a sufficiently dense taxon sampling with the key major lineages of extant amphibians. This dataset has been used to infer a robust phylogenetic framework and molecular timescale for the origin of extant amphibians employing the most recent phylogenetic and dating methods, as well as several alternative calibration schemes. The monophyly of each extant amphibian order and the sister group relationship between frogs and salamanders (Batrachia hypothesis) are all strongly supported. Dating analyses (all methods and calibration schemes used) suggest that the origin of extant amphibians (divergence between caecilian and batrachians) occurred in the Late Carboniferous, around 315 Mya, and the divergence between frogs and salamanders occurred in the Early Permian, around 290 Mya. These age estimates are more consistent with the fossil record than previous older estimates, and more in line with the Temnospondyli or the Lepospondyli hypotheses of lissamphibian ancestry (although the polyphyly hypothesis cannot be completely ruled out).


Assuntos
Anfíbios/genética , Evolução Molecular , Filogenia , Anfíbios/classificação , Animais , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , Especiação Genética , Funções Verossimilhança , Modelos Genéticos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA