Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Oncol ; 16(14): 2672-2692, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35586989

RESUMO

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. Alterations in proteins of the p53-family are a common event in CRC. ΔNp73, a p53-family member, shows oncogenic properties and its effectors are largely unknown. We performed an in-depth proteomics characterization of transcriptional control by ∆Np73 of the secretome of human colon cancer cells and validated its clinical potential. The secretome was analyzed using high-density antibody microarrays and stable isotopic metabolic labeling. Validation was performed by semiquantitative PCR, ELISA, dot-blot and western blot analysis. Evaluation of selected effectors was carried out using 60 plasma samples from CRC patients, individuals carrying premalignant colorectal lesions and colonoscopy-negative controls. In total, 51 dysregulated proteins were observed showing at least 1.5-foldchange in expression. We found an important association between the overexpression of ∆Np73 and effectors related to lymphangiogenesis, vasculogenesis and metastasis, such as brain-derived neurotrophic factor (BDNF) and the putative aminoacyl tRNA synthase complex-interacting multifunctional protein 1 (EMAP-II)-vascular endothelial growth factor C-vascular endothelial growth factor receptor 3 axis. We further demonstrated the usefulness of BDNF as a potential CRC biomarker able to discriminate between CRC patients and premalignant individuals from controls with high sensitivity and specificity.


Assuntos
Neoplasias Colorretais , Linfangiogênese , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neoplasias Colorretais/genética , Humanos , Proteômica , Proteína Supressora de Tumor p53 , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo
2.
Clin Cancer Res ; 21(19): 4398-409, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26023082

RESUMO

BACKGROUND: The acquired resistance to chemotherapy represents the major limitation in the treatment of cancer. New strategies to solve this failure and improve patients' outcomes are necessary. The cancer preventive effect of ß-cryptoxanthin has been widely described in population studies. Few reports support its putative use as an antitumoral compound. Here we focus on the therapeutic potential of ß-cryptoxanthin individually or in combination with oxaliplatin in colon cancer and try to decipher the molecular basis underlying its effect. METHODS: Apoptosis, viability and proliferation assays, mouse models, and an intervention study in 20 healthy subjects were performed. A PCR array was carried out to unravel the molecular putative basis of the ß-cryptoxanthin effect, and further signaling experiments were conducted. Comet Assay was completed to evaluate the genotoxicity of the treatments. RESULTS: ß-Cryptoxanthin differentially regulates the expression of the P73 variants in vitro, in vivo, and in a human intervention study. This carotenoid decreases the proliferation of cancer cells and cooperates with oxaliplatin to induce apoptosis through the negative regulation of ΔNP73. The antitumoral concentrations of oxaliplatin decrease in the presence of ß-cryptoxanthin to achieve same percentage of growth inhibition. The genotoxicity in peripheral blood mononuclear cells of mice decreased in the combined treatment. CONCLUSIONS: We propose a putative novel therapeutic strategy for the treatment of colon cancer based on the combination of ß-cryptoxanthin and oxaliplatin. The combined regimen produced more benefit than either individual modality without increasing side effects. In addition, the concentration-limiting toxicity of oxaliplatin is reduced in the presence of the carotenoid.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/genética , Criptoxantinas/farmacologia , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Nucleares/genética , Compostos Organoplatínicos/farmacologia , Proteínas Supressoras de Tumor/genética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Oxaliplatina , Isoformas de Proteínas , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Hum Mol Genet ; 23(2): 467-78, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24067531

RESUMO

Tumor-derived exosomes are emerging as local and systemic cell-to-cell mediators of oncogenic information through the horizontal transfer of mRNAs, microRNAs and proteins during tumorigenesis. The exosomal content has been described as biologically active when taken up by the recipient cell. Identifying the specific molecular cargo of exosomes will help to determine their function in specific steps of the tumorigenic process. Here we evaluate whether ΔNp73 is selectively packaged in tumor-derived exosomes, its function in the acceptor cells in vitro and in vivo and its prognosis potential in cancer. ΔNp73 messenger is enriched in tumor-derived exosomes, suggesting its active sorting in these microvesicles. We observed the transmission of this exosome cargo to different cell types and how it confers proliferation potential and chemoresistance to the acceptor cells in vitro and in animal models. Finally, our data support the potential prognostic value of exosomal ΔNp73 in colon cancer patients.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Exossomos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Feminino , Células HCT116 , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Prognóstico , RNA Mensageiro/metabolismo , Taxa de Sobrevida , Proteína Tumoral p73
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA