Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 108(1): 197-218, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34309112

RESUMO

Plant defense against melon necrotic spot virus (MNSV) is triggered by the viral auxiliary replicase p29 that is targeted to mitochondrial membranes causing morphological alterations, oxidative burst and necrosis. Here we show that MNSV coat protein (CP) was also targeted to mitochondria and mitochondrial-derived replication complexes [viral replication factories or complex (VRC)], in close association with p29, in addition to chloroplasts. CP import resulted in the cleavage of the R/arm domain previously implicated in genome binding during encapsidation and RNA silencing suppression (RSS). We also show that CP organelle import inhibition enhanced RSS activity, CP accumulation and VRC biogenesis but resulted in inhibition of systemic spreading, indicating that MNSV whole-plant infection requires CP organelle import. We hypothesize that to alleviate the p29 impact on host physiology, MNSV could moderate its replication and p29 accumulation by regulating CP RSS activity through organelle targeting and, consequently, eluding early-triggered antiviral response. Cellular and molecular events also suggested that S/P domains, which correspond to processed CP in chloroplast stroma or mitochondrion matrix, could mitigate host response inhibiting p29-induced necrosis. S/P deletion mainly resulted in a precarious balance between defense and counter-defense responses, generating either cytopathic alterations and MNSV cell-to-cell movement restriction or some degree of local movement. In addition, local necrosis and defense responses were dampened when RSS activity but not S/P organelle targeting was affected. Based on a robust biochemical and cellular analysis, we established that the mitochondrial and chloroplast dual targeting of MNSV CP profoundly impacts the viral infection cycle.


Assuntos
Proteínas do Capsídeo/metabolismo , Cucurbitaceae/virologia , Doenças das Plantas/virologia , Tombusviridae/fisiologia , Proteínas do Capsídeo/genética , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/fisiologia , Genes Reporter , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Mutação , Estresse Oxidativo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/virologia , Transporte Proteico , Interferência de RNA , Nicotiana/genética , Nicotiana/fisiologia , Tombusviridae/genética , Tombusviridae/patogenicidade , Tropismo Viral , Replicação Viral
2.
Virus Res ; 272: 197733, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31461660

RESUMO

Plant viruses express RNA silencing suppressor (RSS) proteins to counteract plant defence mechanisms. Here, we describe a method to assess the RSS activity based on an alfalfa mosaic virus (AMV) RNA 3 expression vector and transgenic Nicotiana tabacum plants that express the P1 and P2 subunits of the AMV replicase (P12 plants). Inoculation of P12 plants with different AMV RNA 3 constructs expressing different HC-Pro mutants that differ in their RSS capabilities, revealed a perfect correlation between necrotic lesions on inoculated leaves and RSS activity. Protoplast analysis showed that the RSS activity correlated with the accumulation of the AMV RNAs. A direct comparison between three RSS activity assays and the AMV-P12 system revealed that the coat protein of carnation mottle virus displays RSS activity with the four assays and reduced the accumulation of the siRNAs.


Assuntos
Vírus do Mosaico da Alfafa/genética , Expressão Gênica , Inativação Gênica , Vetores Genéticos/genética , Interferência de RNA , Ordem dos Genes , Fenótipo , Doenças das Plantas/virologia , Vírus de Plantas/genética , RNA Viral , Sensibilidade e Especificidade
3.
Virus Res ; 262: 54-61, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29475053

RESUMO

Genes orthologous to the 30K-superfamily of movement proteins (MP) from plant viruses have been recently discovered by bioinformatics analyses as integrated elements in the genome of most vascular plants. However, their functional relevance for plants is still unclear. Here, we undertake some preliminary steps into the functional characterization of one of these putative MP genes found in Arabidopsis thaliana. We found that the AtMP gene is expressed at different stages of the plant development, with accumulation being highest in flowers but lowest in mature siliques. We also found down-regulation of the gene may result in a small delay in plant development and in an exacerbation of the negative effect of salinity in germination efficiency. We have also explored whether changes in expression of the endogenous AtMP have any effect on susceptibility to infection with several viruses, and found that the infectivity of tobacco rattle tobravirus was strongly dependent on the expression of the endogenous AtMP. Finally, we have cloned the endogenous MP from four different plant species into an expression vector that allows for specifically assessing their activity as cell-to-cell movement proteins and have shown that though some may still retain the ancestral activity, they do so in a quite inefficient manner, thus suggesting they have acquired a novel function during adaptation to the host genome.


Assuntos
Arabidopsis/virologia , Proteínas do Movimento Viral em Plantas/genética , Vírus de Plantas/genética , Arabidopsis/crescimento & desenvolvimento , Biologia Computacional , Regulação para Baixo , Interações entre Hospedeiro e Microrganismos/genética , Doenças das Plantas/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Salinidade
4.
Front Microbiol ; 9: 2087, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30250456

RESUMO

Plant viruses are still one of the main contributors to economic losses in agriculture. It has been estimated that plant viruses can cause as much as 50 billion euros loss worldwide, per year. This situation may be worsened by recent climate change events and the associated changes in disease epidemiology. Reliable and early detection methods are still one of the main and most effective actions to develop control strategies for plant viral diseases. During the last years, considerable progress has been made to develop tools with high specificity and low detection limits for use in the detection of these plant pathogens. Time and cost reductions have been some of the main objectives pursued during the last few years as these increase their feasibility for routine use. Among other strategies, these objectives can be achieved by the simultaneous detection and (or) identification of several viruses in a single assay. Nucleic acid-based detection techniques are especially suitable for this purpose. Polyvalent detection has allowed the detection of multiple plant viruses at the genus level. Multiplexing RT polymerase chain reaction (PCR) has been optimized for the simultaneous detection of more than 10 plant viruses/viroids. In this short review, we provide an update on the progress made during the last decade on techniques such as multiplex PCR, polyvalent PCR, non-isotopic molecular hybridization techniques, real-time PCR, and array technologies to allow simultaneous detection of multiple plant viruses. Also, the potential and benefits of the powerful new technique of deep sequencing/next-generation sequencing are described.

5.
Phytopathology ; 108(12): 1522-1529, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29894281

RESUMO

The use of a unique riboprobe named polyprobe, carrying partial sequences of different plant viruses or viroids fused in tandem, has permitted the polyvalent detection of up to 10 different pathogens by using a nonradioactive molecular hybridization procedure. In the present analysis, we have developed a unique polyprobe with the capacity to detect all members of the genus Potyvirus, which we have named genus-probe. To do this, we have exploited the capacity of the molecular hybridization assay to cross-hybridize with related sequences by reducing the hybridization temperature. We observed that sequences showing a percentage similarity of 68% or higher could be detected with the same probe by hybridizing at 50 to 55°C, with a detection limit of picograms of viral RNA comparable to the specific individual probes. According to this, we developed several polyvalent polyprobes, containing three, five, or seven different 500-nucleotide fragments of a conserved region of the NIb gene. The polyprobe carrying seven different conserved regions was able to detect all the 32 potyviruses assayed in the present work with no signal in the healthy tissue, indicating the potential capacity of the polyprobe to detect all described, and probably uncharacterized, potyviruses being then considered as a genus-probe. The use of this technology in routine diagnosis not only for Potyvirus but also to other viral genera is discussed.


Assuntos
Sondas de DNA/genética , Hibridização de Ácido Nucleico/métodos , Doenças das Plantas/virologia , Potyvirus/isolamento & purificação , Sequência Conservada , Potyvirus/genética , RNA Viral/genética , Viroides/genética , Viroides/isolamento & purificação
6.
Proc Natl Acad Sci U S A ; 114(40): 10755-10760, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923956

RESUMO

N6-methyladenosine (m6A) is an internal, reversible nucleotide modification that constitutes an important regulatory mechanism in RNA biology. Unlike mammals and yeast, no component of the m6A cellular machinery has been described in plants at present. m6A has been identified in the genomic RNAs of diverse mammalian viruses and, additionally, viral infection was found to be modulated by the abundance of m6A in viral RNAs. Here we show that the Arabidopsis thaliana protein atALKBH9B (At2g17970) is a demethylase that removes m6A from single-stranded RNA molecules in vitro. atALKBH9B accumulates in cytoplasmic granules, which colocalize with siRNA bodies and associate with P bodies, suggesting that atALKBH9B m6A demethylase activity could be linked to mRNA silencing and/or mRNA decay processes. Moreover, we identified the presence of m6A in the genomes of two members of the Bromoviridae family, alfalfa mosaic virus (AMV) and cucumber mosaic virus (CMV). The demethylation activity of atALKBH9B affected the infectivity of AMV but not of CMV, correlating with the ability of atALKBH9B to interact (or not) with their coat proteins. Suppression of atALKBH9B increased the relative abundance of m6A in the AMV genome, impairing the systemic invasion of the plant, while not having any effect on CMV infection. Our findings suggest that, as recently found in animal viruses, m6A modification may represent a plant regulatory strategy to control cytoplasmic-replicating RNA viruses.


Assuntos
Adenosina/análogos & derivados , Vírus do Mosaico da Alfafa/patogenicidade , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/virologia , Genoma Viral , RNA Viral/genética , Adenosina/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Genômica/métodos , RNA Viral/metabolismo
7.
Virus Res ; 240: 25-34, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28754561

RESUMO

The cell-to-cell movement protein (NSM) of tomato spotted wilt virus (TSWV) has been recently identified as the effector of the single dominant Sw-5b resistance gene from tomato (Solanum lycopersicum L.). Although most TSWV isolates shows a resistance-inducing (RI) phenotype, regular reports have appeared on the emergence of resistance-breaking (RB) isolates in tomato fields, and suggested a strong association with two point mutations (C118Y and T120N) in the NSM protein. In this study the Sw-5b gene has been demonstrated to confer not only resistance against TSWV but to members of five additional, phylogenetically-related classified within the so-called "American" evolutionary clade, i.e., Alstroemeria necrotic streak virus (ANSV), chrysanthemum stem necrosis virus (CSNV), groundnut ringspot virus (GRSV), Impatiens necrotic spot virus (INSV) and tomato chlorotic spot virus (TCSV). Remarkably, bean necrotic mosaic virus (BeNMV), a recently discovered tospovirus classified in a distinct American subclade and circulating on the American continent, did not trigger a Sw-5b-mediated hypersensitive (HR) response. Introduction of point mutations C118Y and T120N into the NSM protein of TSWV, TCSV and CSNV abrogated the ability to trigger Sw-5b-mediated HR in both transgenic-N. benthamiana and tomato isolines harboring the Sw-5b gene whereas it had no effect on BeNMV NSM. Truncated versions of TSWV NSM lacking motifs associated with tubule formation, cell-to-cell or systemic viral movement were made and tested for triggering of resistance. HR was still observed with truncated NSM proteins lacking 50 amino acids (out of 301) from either the amino- or carboxy-terminal end. These data altogether indicate the importance of amino acid residues C118 and T120 in Sw-5b-mediated HR only for the NSM proteins from one cluster of tospoviruses within the American clade, and that the ability to support viral cell-to-cell movement is not required for effector functionality.


Assuntos
Doenças das Plantas/virologia , Proteínas de Plantas/imunologia , Proteínas do Movimento Viral em Plantas/imunologia , Solanum lycopersicum/imunologia , Tospovirus/genética , Resistência à Doença , Interações Hospedeiro-Parasita , Solanum lycopersicum/genética , Solanum lycopersicum/virologia , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas do Movimento Viral em Plantas/genética , Especificidade da Espécie , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/virologia , Tospovirus/imunologia , Tospovirus/isolamento & purificação , Tospovirus/fisiologia
8.
Sci Rep ; 7(1): 5004, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28694514

RESUMO

The existence of multipartite viruses is an intriguing mystery in evolutionary virology. Several hypotheses suggest benefits that should outweigh the costs of a reduced transmission efficiency and of segregation of coadapted genes associated with encapsidating each segment into a different particle. Advantages range from increasing genome size despite high mutation rates, faster replication, more efficient selection resulting from reassortment during mixed infections, better regulation of gene expression, or enhanced virion stability and cell-to-cell movement. However, support for these hypotheses is scarce. Here we report experiments testing whether an evolutionary stable equilibrium exists for the three genomic RNAs of Alfalfa mosaic virus (AMV). Starting infections with different segment combinations, we found that the relative abundance of each segment evolves towards a constant ratio. Population genetic analyses show that the segment ratio at this equilibrium is determined by frequency-dependent selection. Replication of RNAs 1 and 2 was coupled and collaborative, whereas the replication of RNA 3 interfered with the replication of the other two. We found that the equilibrium solution is slightly different for the total amounts of RNA produced and encapsidated, suggesting that competition exists between all RNAs during encapsidation. Finally, we found that the observed equilibrium appears to be host-species dependent.


Assuntos
Vírus do Mosaico da Alfafa/fisiologia , Capsicum/virologia , Medicago/virologia , Nicotiana/virologia , Vírus do Mosaico da Alfafa/genética , Evolução Molecular , Tamanho do Genoma , Genoma Viral , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Replicação Viral
9.
J Virol ; 88(5): 3016-26, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24371064

RESUMO

UNLABELLED: Plant positive-strand RNA viruses require association with plant cell endomembranes for viral translation and replication, as well as for intra- and intercellular movement of the viral progeny. The membrane association and RNA binding of the Tobacco mosaic virus (TMV) movement protein (MP) are vital for orchestrating the macromolecular network required for virus movement. A previously proposed topological model suggests that TMV MP is an integral membrane protein with two putative α-helical transmembrane (TM) segments. Here we tested this model using an experimental system that measured the efficiency with which natural polypeptide segments were inserted into the ER membrane under conditions approximating the in vivo situation, as well as in planta. Our results demonstrated that the two hydrophobic regions (HRs) of TMV MP do not span biological membranes. We further found that mutations to alter the hydrophobicity of the first HR modified membrane association and precluded virus movement. We propose a topological model in which the TMV MP HRs intimately associate with the cellular membranes, allowing maximum exposure of the hydrophilic domains of the MP to the cytoplasmic cellular components. IMPORTANCE: To facilitate plant viral infection and spread, viruses encode one or more movement proteins (MPs) that interact with ER membranes. The present work investigated the membrane association of the 30K MP of Tobacco mosaic virus (TMV), and the results challenge the previous topological model, which predicted that the TMV MP behaves as an integral membrane protein. The current data provide greatly needed clarification of the topological model and provide substantial evidence that TMV MP is membrane associated only at the cytoplasmic face of the membrane and that neither of its domains is integrated into the membrane or translocated into the lumen. Understanding the topology of MPs in the ER is vital for understanding the role of the ER in plant virus transport and for predicting interactions with host factors that mediate resistance to plant viruses.


Assuntos
Membrana Celular/metabolismo , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus do Mosaico do Tabaco/metabolismo , Sequência de Aminoácidos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Expressão Gênica , Genes Reporter , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Células Vegetais/metabolismo , Proteínas do Movimento Viral em Plantas/química , Proteínas do Movimento Viral em Plantas/genética , Ligação Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
10.
J Virol ; 87(19): 10805-15, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23903837

RESUMO

Multipartite plant viruses were discovered because of discrepancies between the observed dose response and predictions of the independent-action hypothesis (IAH) model. Theory suggests that the number of genome segments predicts the shape of the dose-response curve, but a rigorous test of this hypothesis has not been reported. Here, Alfalfa mosaic virus (AMV), a tripartite Alfamovirus, and transgenic Nicotianatabacum plants expressing no (wild type), one (P2), or two (P12) viral genome segments were used to test whether the number of genome segments necessary for infection predicts the dose response. The dose-response curve of wild-type plants was steep and congruent with the predicted kinetics of a multipartite virus, confirming previous results. Moreover, for P12 plants, the data support the IAH model, showing that the expression of virus genome segments by the host plant can modulate the infection kinetics of a tripartite virus to those of a monopartite virus. However, the different types of virus particles occurred at different frequencies, with a ratio of 116:45:1 (RNA1 to RNA2 to RNA3), which will affect infection kinetics and required analysis with a more comprehensive infection model. This analysis showed that each type of virus particle has a different probability of invading the host plant, at both the primary- and systemic-infection levels. While the number of genome segments affects the dose response, taking into consideration differences in the infection kinetics of the three types of AMV particles results in a better understanding of the infection process.


Assuntos
Vírus do Mosaico da Alfafa/patogenicidade , Genoma Viral/genética , Modelos Estatísticos , Nicotiana/virologia , Plantas Geneticamente Modificadas/virologia , Vírus de RNA/patogenicidade , Replicação Viral , Vírus do Mosaico da Alfafa/classificação , Genes Virais , RNA de Plantas/genética , RNA Viral/genética
11.
Adv Virus Res ; 87: 139-81, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23809923

RESUMO

Ilarviruses were among the first 16 groups of plant viruses approved by ICTV. Like Alfalfa mosaic virus (AMV), bromoviruses, and cucumoviruses they are isometric viruses and possess a single-stranded, tripartite RNA genome. However, unlike these other three groups, ilarviruses were recognized as being recalcitrant subjects for research (their ready lability is reflected in the sigla used to create the group name) and were renowned as unpromising subjects for the production of antisera. However, it was recognized that they shared properties with AMV when the phenomenon of genome activation, in which the coat protein (CP) of the virus is required to be present to initiate infection, was demonstrated to cross group boundaries. The CP of AMV could activate the genome of an ilarvirus and vice versa. Development of the molecular information for ilarviruses lagged behind the knowledge available for the more extensively studied AMV, bromoviruses, and cucumoviruses. In the past 20 years, genomic data for most known ilarviruses have been developed facilitating their detection and allowing the factors involved in the molecular biology of the genus to be investigated. Much information has been obtained using Prunus necrotic ringspot virus and the more extensively studied AMV. A relationship between some ilarviruses and the cucumoviruses has been defined with the recognition that members of both genera encode a 2b protein involved in RNA silencing and long distance viral movement. Here, we present a review of the current knowledge of both the taxonomy and the molecular biology of this genus of agronomically and horticulturally important viruses.


Assuntos
Genoma Viral , Interações Hospedeiro-Patógeno/imunologia , Ilarvirus , RNA Viral/genética , Sequência de Aminoácidos , Variação Genética , Ilarvirus/classificação , Ilarvirus/genética , Ilarvirus/metabolismo , Plantas/virologia , Proteínas de Ligação a RNA , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/genética , Vírion/metabolismo , Vírion/fisiologia
12.
J Virol ; 83(11): 5535-43, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19321624

RESUMO

The cell-to-cell transport of plant viruses depends on one or more virus-encoded movement proteins (MPs). Some MPs are integral membrane proteins that interact with the membrane of the endoplasmic reticulum, but a detailed understanding of the interaction between MPs and biological membranes has been lacking. The cell-to-cell movement of the Prunus necrotic ringspot virus (PNRSV) is facilitated by a single MP of the 30K superfamily. Here, using a myriad of biochemical and biophysical approaches, we show that the PNRSV MP contains only one hydrophobic region (HR) that interacts with the membrane interface, as opposed to being a transmembrane protein. We also show that a proline residue located in the middle of the HR constrains the structural conformation of this region at the membrane interface, and its replacement precludes virus movement.


Assuntos
Membrana Celular/metabolismo , Ilarvirus/fisiologia , Proteínas do Movimento Viral em Plantas/metabolismo , Prunus/virologia , Internalização do Vírus , Sequência de Aminoácidos , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Mutação/genética , Fosfolipídeos/metabolismo , Proteínas do Movimento Viral em Plantas/química , Proteínas do Movimento Viral em Plantas/genética , Alinhamento de Sequência , Análise de Sequência de Proteína
13.
J Gen Virol ; 87(Pt 6): 1745-1750, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16690941

RESUMO

Interactions between viral proteins are critical for virus viability. Bimolecular fluorescent complementation (BiFC) technique determines protein interactions in real-time under almost normal physiological conditions. The coat protein (CP) of Prunus necrotic ringspot virus is required for multiple functions in its replication cycle. In this study, the region involved in CP dimerization has been mapped by BiFC in both bacteria and plant tissue. Full-length and C-terminal deleted forms of the CP gene were fused in-frame to the N- and C-terminal fragments of the yellow fluorescent protein. The BiFC analysis showed that a domain located between residues 9 and 27 from the C-end plays a critical role in dimerization. The importance of this C-terminal region in dimer formation and the applicability of the BiFC technique to analyse viral protein interactions are discussed.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Ilarvirus/metabolismo , Doenças das Plantas/virologia , Prunus/virologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas do Capsídeo/genética , Dimerização , Escherichia coli/genética , Escherichia coli/metabolismo , Corantes Fluorescentes/metabolismo , Ilarvirus/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/virologia
14.
Virology ; 346(1): 66-73, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16316673

RESUMO

RNA 3 of Alfalfa mosaic virus (AMV) encodes the movement protein (MP) and coat protein (CP). Chimeric RNA 3 with the AMV MP gene replaced by the corresponding MP gene of Prunus necrotic ringspot virus, Brome mosaic virus, Cucumber mosaic virus or Cowpea mosaic virus efficiently moved from cell-to-cell only when the expressed MP was extended at its C-terminus with the C-terminal 44 amino acids of AMV MP. MP of Tobacco mosaic virus supported the movement of the chimeric RNA 3 whether or not the MP was extended with the C-terminal AMV MP sequence. The replacement of the CP gene in RNA 3 by a mutant gene encoding a CP defective in virion formation did not affect cell-to-cell transport of the chimera's with a functional MP. A GST pull-down technique was used to demonstrate for the first time that the C-terminal 44 amino acids of the MP of a virus belonging to the family Bromoviridae interact specifically with AMV virus particles. Together, these results demonstrate that AMV RNA 3 can be transported from cell-to-cell by both tubule-forming and non-tubule-forming MPs if a specific MP-CP interaction occurs.


Assuntos
Vírus do Mosaico da Alfafa/fisiologia , Vírus de Plantas/metabolismo , Proteínas Virais/metabolismo , Vírion/metabolismo , Vírus do Mosaico da Alfafa/genética , Vírus do Mosaico da Alfafa/metabolismo , Bromovirus/genética , Bromovirus/fisiologia , Comovirus/genética , Comovirus/fisiologia , Cucumovirus/genética , Cucumovirus/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ilarvirus/genética , Ilarvirus/fisiologia , Proteínas do Movimento Viral em Plantas , Vírus de Plantas/genética , Vírus de Plantas/fisiologia , Protoplastos/virologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/virologia , Tobamovirus/genética , Tobamovirus/metabolismo , Proteínas Virais/química , Proteínas Virais/genética
15.
J Virol Methods ; 124(1-2): 49-55, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15664050

RESUMO

A new strategy for the simultaneous detection of plant viruses by molecular hybridization has been developed. Two, four or six viral sequences were fused in tandem and transcribed to render unique riboprobes and designated as 'polyprobes'. The 'polyprobe four' (poly 4) covered the four ilarviruses affecting stone fruit trees including apple mosaic virus (ApMV), prunus necrotic ringspot virus (PNRSV), prune dwarf virus (PDV), and American plum line pattern virus (APLPV) whereas the 'polyprobe two' (poly 2) was designed to detect simultaneously, plum pox virus (PPV) and apple chlorotic leaf spot virus (ACLSV), the two more important viruses affecting these trees. Finally, a 'polyprobe six' (poly 6) was generated to detect any of the six viruses. The three polyprobes were comparable to the individual riboprobes in terms of end-point dilution limit and specificity. The validation of the new simultaneous detection strategy was confirmed by the analysis of 46 field samples from up to seven different hosts collected from 10 different geographical areas.


Assuntos
Frutas/virologia , Hibridização de Ácido Nucleico/métodos , Vírus de Plantas/isolamento & purificação , Vírus de Plantas/genética , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA