Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 68: 102962, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38029455

RESUMO

Pancreatic ductal adenocarcinoma (PDA) cells reprogram both mitochondrial and lysosomal functions to support growth. At the same time, this causes significant dishomeostasis of free radicals. While this is compensated by the upregulation of detoxification mechanisms, it also represents a potential vulnerability. Here we demonstrate that PDA cells are sensitive to the inhibition of the mevalonate pathway (MVP), which supports the biosynthesis of critical antioxidant intermediates and protect from ferroptosis. We attacked the susceptibility of PDA cells to ferroptotic death with selenorganic compounds, including dibenzyl diselenide (DBDS) that exhibits potent pro-oxidant properties and inhibits tumor growth in vitro and in vivo. DBDS treatment induces the mobilization of iron from mitochondria enabling uncontrolled lipid peroxidation. Finally, we showed that DBDS and statins act synergistically to promote ferroptosis and provide evidence that combined treatment is a viable strategy to combat PDA.


Assuntos
Ferroptose , Neoplasias Pancreáticas , Selênio , Humanos , Pâncreas , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Peroxidação de Lipídeos , Neoplasias Pancreáticas
2.
Toxicol Res ; 39(1): 105-114, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36721677

RESUMO

Phenylselenenylzinc chloride (PhSeZnCl) is an air-stable selenolate, easily synthesizable through oxidative insertion of elemental zinc into the Se-halogen bond of the commercially available phenylselenyl chloride. PhSeZnCl was shown to possess a marked GPx-like activity both in NMR and in vitro tests, and to effectively react with cellular thiols, and was supposed for a potential use in the chemotherapy of drug-resistant cancers. However, activity of PhSeZnCl in hepatic cells has never been tested before now. In this in vitro approach, we evaluated the cytotoxic, genotoxic, and apoptotic activities, as well as the effects on cell cycle of PhSeZnCl in two preclinical hepatic models, namely HepG2 and HepaRG cells. Results showed that cell viability of HepG2 and HepaRG cells decreased in a dose-dependent manner, with a more marked effect in HepG2 tumour cells. Moreover, treatment with 50 µg/mL PhSeZnCl caused an increase of primary DNA damage (4 h) and a statistically significant increase of HepG2 cells arrested in G2/M phase. In addition, it altered mitochondrial membrane potential and induced chromosomal DNA fragmentation (24 h). In HepaRG cells, PhSeZnCl was able to determine a cell cycle-independent induction of apoptosis. Particularly, 50 µg/mL induced mitochondrial membrane depolarization after 24 h and apoptosis after 4 h treatment. Futhermore, all PhSeZnCl concentrations tested determined a significant increase of apoptotic cells after 24 h. Apoptosis was also highlighted by the detection of active Caspase-3 by Western Blot analysis after 24 h exposure. In conclusion, this first toxicological assessment provides new insights into the biological activity of PhSeZnCl in preclinical hepatic models that will be useful in future safety assessment investigation of this compound as a potential pharmaceutical. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-022-00148-y.

3.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674441

RESUMO

This review describes, from a chemical point of view, the top "blockbuster" small molecule orphan drugs according to their forecasted sales in 2026. Orphan drugs are intended for the treatment, prevention, or diagnosis of a rare disease or condition. These molecules are mostly addressed to the treatment of rare forms of cancer. The respiratory and central nervous systems represent other common therapeutic subcategories. This work will show how the orphan drugs market has significantly grown and will account for a consistent part of prescriptions by 2026.


Assuntos
Neoplasias , Produção de Droga sem Interesse Comercial , Humanos , Doenças Raras/tratamento farmacológico , Neoplasias/tratamento farmacológico , Comércio
4.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35328446

RESUMO

Here we report the reaction in the biphasic system of the in situ prepared selenols and thiols with 1,4-androstadiene-3,17-dione (1) or prednisone acetate (2) having α,ß-unsaturated ketone as an electrophilic functionalization. The Michael-type addition reaction resulted to be chemo- and stereoselective, affording a series of novel steroidal selenides and sulfides. This is an example of a one-step, eco-friendly process that bypasses some of the main concerns connected with the bad smell and the toxicity of these seleno- and thio-reagents. Furthermore, we demonstrated that the proposed methodology offers the possibility to prepare libraries of steroids variously and selectively decorated with different organochalcogen moieties at the C1 position starting from 1,4-androstadienic skeletons and leaving unaltered the C4-C5 unsaturation. Based on the data reported in the literature the introduction of an organoselenium or an organosulfur moiety in a steroid could provide new interesting pharmaceutically active entities exerting anticancer and antimicrobial activities. In this optic, new synthetic strategies to efficiently prepare this class of compounds could be strongly desirable.


Assuntos
Cetonas , Esteroides , Compostos de Sulfidrila , Sulfetos , Zinco
5.
Molecules ; 27(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35268744

RESUMO

This review describes the recent Food and Drug Administration (FDA)-approved drugs (in the year 2021) containing at least one halogen atom (covalently bound). The structures proposed throughout this work are grouped according to their therapeutical use. Their synthesis is presented as well. The number of halogenated molecules that are reaching the market is regularly preserved, and 14 of the 50 molecules approved by the FDA in the last year contain halogens. This underlines the emergent role of halogens and, in particular, of fluorine and chlorine in the preparation of drugs for the treatment of several diseases such as viral infections, several types of cancer, cardiovascular disease, multiple sclerosis, migraine and inflammatory diseases such as vasculitis.


Assuntos
Halogênios
6.
Molecules ; 26(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299505

RESUMO

Ebselen is the leader of selenorganic compounds, and starting from its identification as mimetic of the key antioxidant enzyme glutathione peroxidase, several papers have appeared in literature claiming its biological activities. It was the subject of several clinical trials and it is currently in clinical evaluation for the treatment of COVID-19 patients. Given our interest in the synthesis and pharmacological evaluation of selenorganic derivatives with this review, we aimed to collect all the papers focused on the biological evaluation of ebselen and its close analogues, covering the timeline between 2016 and most of 2021. Our analysis evidences that, even if it lacks specificity when tested in vitro, being able to bind to every reactive cysteine, it proved to be always well tolerated in vivo, exerting no sign of toxicity whatever the administered doses. Besides, looking at the literature, we realized that no review article dealing with the synthetic approaches for the construction of the benzo[d][1,2]-selenazol-3(2H)-one scaffold is available; thus, a section of the present review article is completely devoted to this specific topic.


Assuntos
Azóis/química , Azóis/síntese química , Azóis/farmacologia , Compostos Organosselênicos/química , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/farmacologia , Animais , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Antivirais/farmacologia , Biomimética/métodos , Inibidores de Ciclo-Oxigenase/farmacologia , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/farmacologia , Humanos , Isoindóis , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Selênio/química , Selenoproteínas/síntese química , Selenoproteínas/farmacologia
7.
Molecules ; 24(16)2019 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-31405214

RESUMO

A series of variously functionalized selenium-containing compounds were purposely synthesized and evaluated against a panel of cancer cell lines. Most of the compounds showed an interesting cytotoxicity profile with compound 5 showing a potent activity on MCF7 cells. The ethyl amino derivative 5 acts synergistically with cis-platin and inhibits the GST enzyme with a potency that well correlates with the cytotoxicity observed in MCF7 cells. A computational analysis suggests a possible binding mode on the GST enzyme. As the main outcome of the present study, the ethyl amino derivative 5 emerged as a valid lead compound for further, future developments.


Assuntos
Antineoplásicos , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos , Glutationa Transferase/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Compostos Organosselênicos , Compostos de Selênio , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glutationa Transferase/metabolismo , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Células K562 , Células MCF-7 , Proteínas de Neoplasias/metabolismo , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Compostos Organosselênicos/farmacologia , Compostos de Selênio/síntese química , Compostos de Selênio/química , Compostos de Selênio/farmacologia
8.
Sci Rep ; 8(1): 1680, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374194

RESUMO

Tankyrases (TNKSs) are enzymes specialized in catalyzing poly-ADP-ribosylation of target proteins. Several studies have validated TNKSs as anti-cancer drug targets due to their regulatory role in Wnt/ß-catenin pathway. Recently a lot of effort has been put into developing more potent and selective TNKS inhibitors and optimizing them towards anti-cancer agents. We noticed that some 2-phenylquinazolinones (2-PQs) reported as CDK9 inhibitors were similar to previously published TNKS inhibitors. In this study, we profiled this series of 2-PQs against TNKS and selected kinases that are involved in the Wnt/ß-catenin pathway. We found that they were much more potent TNKS inhibitors than they were CDK9/kinase inhibitors. We evaluated the compound selectivity to tankyrases over the ARTD enzyme family and solved co-crystal structures of the compounds with TNKS2. Comparative structure-based studies of the catalytic domain of TNKS2 with selected CDK9 inhibitors and docking studies of the inhibitors with two kinases (CDK9 and Akt) revealed important structural features, which could explain the selectivity of the compounds towards either tankyrases or kinases. We also discovered a compound, which was able to inhibit tankyrases, CDK9 and Akt kinases with equal µM potency.


Assuntos
Inibidores de Proteínas Quinases/metabolismo , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Quinazolinonas/metabolismo , Tanquirases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Humanos , Simulação de Acoplamento Molecular , Fosforilação , Ligação Proteica , Conformação Proteica , Tanquirases/antagonistas & inibidores
9.
Adv Cancer Res ; 136: 259-302, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29054421

RESUMO

In vitro and in vivo experimental models clearly demonstrate the efficacy of Se compounds as anticancer agents, contingent upon chemical structures and concentrations of test molecules, as well as on the experimental model under investigation that together influence cellular availability of compounds, their molecular dynamics and mechanism of action. The latter includes direct and indirect redox effects on cellular targets by the activation and altered compartmentalization of molecular oxygen, and the interaction with protein thiols and Se proteins. As such, Se compounds interfere with the redox homeostasis and signaling of cancer cells to produce anticancer effects that include alterations in key regulatory elements of energy metabolism and cell cycle checkpoints that ultimately influence differentiation, proliferation, senescence, and death pathways. Cys-containing proteins and Se proteins involved in the response to Se compounds as sensors and transducers of anticancer signals, i.e., the pharmacoproteome of Se compounds, are described and include critical elements in the different phases of cancer onset and progression from initiation and escape of immune surveillance to tumor growth, angiogenesis, and metastasis. The efficacy and mode of action on these compounds vary depending on the inorganic and organic form of Se used as either supplement or pharmacological agent. In this regard, differences in experimental/clinical protocols provide options for either chemoprevention or therapy in different human cancers.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Compostos de Selênio/farmacologia , Compostos de Selênio/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Neovascularização Patológica/tratamento farmacológico
10.
J Med Chem ; 58(24): 9601-14, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26613134

RESUMO

The interest in the synthesis of Se-containing compounds is growing with the discovery of derivatives exhibiting various biological activities. In this manuscript, we have identified a series of 2,2'-diselenobisbenzamides (DISeBAs) as novel HIV retroviral nucleocapsid protein 7 (NCp7) inhibitors. Because of its pleiotropic functions in the whole viral life cycle and its mutation intolerant nature, NCp7 represents a target of great interest which is not reached by any anti-HIV agent in clinical use. Using the diselenobisbenzoic scaffold, amino acid, and benzenesulfonamide derivatives were prepared and biologically profiled against different models of HIV infection. The incorporation of amino acids such as glycine and glutamate into DISeBAs 7 and 8 resulted in selective anti-HIV activity against both acutely and chronically infected cells as well as an interesting virucidal effect. DISeBAs demonstrated broad antiretroviral activity, encompassing HIV-1 drug-resistant strains including clinical isolates, as well as simian immunodeficiency virus (SIV). Time of addition experiments, along with the observed dose dependent inhibition of the Gag precursor proper processing, confirmed that their mechanism of action is based on NCp7 inhibition.


Assuntos
Fármacos Anti-HIV/química , Benzamidas/química , HIV-1/efeitos dos fármacos , Compostos Organosselênicos/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Fármacos Anti-HIV/farmacologia , Benzamidas/farmacologia , Linhagem Celular Tumoral , Farmacorresistência Viral , Ácido Glutâmico/análogos & derivados , Ácido Glutâmico/química , Ácido Glutâmico/farmacologia , Glicina/análogos & derivados , Glicina/química , Glicina/farmacologia , HIV-1/isolamento & purificação , Humanos , Isoleucina/análogos & derivados , Isoleucina/química , Isoleucina/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Organosselênicos/farmacologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Relação Estrutura-Atividade
11.
Bioorg Med Chem ; 22(17): 4658-66, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25127466

RESUMO

It is getting clearer that many drugs effective in different therapeutic areas act on multiple rather than single targets. The application of polypharmacology concepts might have numerous advantages especially for disease such as HIV/AIDS, where the rapid emergence of resistance requires a complex combination of more than one drug. In this paper, we have designed three hybrid molecules combining WM5, a quinolone derivative we previously identified as HIV Tat-mediated transcription (TMT) inhibitor, with the tricyclic core of nevirapine and BILR 355BS (BILR) non-nucleoside reverse transcriptase inhibitors (NNRTIs) to investigate whether it could be possible to obtain molecules acting on both transcription steps of the HIV replicative cycle. One among the three designed multiple ligands, reached this goal. Indeed, compound 1 inhibited both TMT and reverse transcriptase (RT) activity. Unexpectedly, while the anti-TMT activity exerted by compound 1 resulted into a selective inhibition of HIV-1 reactivation from latently infected OM10.1 cells, the anti-RT properties shown by all of the synthesized compounds did not translate into an anti-HIV activity in acutely infected cells. Thus, we have herein produced the proof of concept that the design of dual TMT-RT inhibitors is indeed possible, but optimization efforts are needed to obtain more potent derivatives.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV/efeitos dos fármacos , Quinolonas/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Linhagem Celular , Relação Dose-Resposta a Droga , HIV/genética , Humanos , Ligantes , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Quinolonas/síntese química , Quinolonas/química , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA