Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1328460, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327988

RESUMO

The inner ear is the organ responsible for hearing and balance. Inner ear dysfunction can be the result of infection, trauma, ototoxic drugs, genetic mutation or predisposition. Often, like for Ménière disease, the cause is unknown. Due to the complex access to the inner ear as a fluid-filled cavity within the temporal bone of the skull, effective diagnosis of inner ear pathologies and targeted drug delivery pose significant challenges. Samples of inner ear fluids can only be collected during surgery because the available procedures damage the tiny and fragile structures of the inner ear. Concerning drug administration, the final dose, kinetics, and targets cannot be controlled. Overcoming these limitations is crucial for successful inner ear precision medicine. Recently, notable advancements in microneedle technologies offer the potential for safe sampling of inner ear fluids and local treatment. Ultrasharp microneedles can reach the inner ear fluids with minimal damage to the organ, collect µl amounts of perilymph, and deliver therapeutic agents in loco. This review highlights the potential of ultrasharp microneedles, combined with nano vectors and gene therapy, to effectively treat inner ear diseases of different etiology on an individual basis. Though further research is necessary to translate these innovative approaches into clinical practice, these technologies may represent a true breakthrough in the clinical approach to inner ear diseases, ushering in a new era of personalized medicine.

2.
Prog Neurobiol ; 216: 102313, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35760142

RESUMO

We have uncovered a novel role for astrocytes-derived extracellular vesicles (EVs) in controlling intraneuronal Ca2+ concentration ([Ca2+]i) and identified transglutaminase-2 (TG2) as a surface-cargo of astrocytes-derived EVs. Incubation of hippocampal neurons with primed astrocyte-derived EVs have led to an increase in [Ca2+]i, unlike EVs from TG2-knockout astrocytes. Exposure of neurons or brain slices to extracellular TG2 promoted a [Ca2+]i rise, which was reversible upon TG2 removal and was dependent on Ca2+ influx through the plasma membrane. Patch-clamp and calcium imaging recordings revealed TG2-dependent neuronal membrane depolarization and activation of inward currents, due to the Na+/Ca2+-exchanger (NCX) operating in the reverse mode and indirect activation of L-type VOCCs, as indicated by VOCCs/NCX pharmacological inhibitors. A subunit of Na+/K+-ATPase was selected by comparative proteomics and identified as being functionally inhibited by extracellular TG2, implicating Na+/K+-ATPase inhibition in NCX reverse mode-switching leading to Ca2+ influx and higher basal [Ca2+]i. These data suggest that reactive astrocytes control intraneuronal [Ca2+]i through release of EVs with TG2 as responsible cargo, which could have a significant impact on synaptic activity in brain inflammation.


Assuntos
Astrócitos , Vesículas Extracelulares , Adenosina Trifosfatases , Astrócitos/metabolismo , Cálcio/metabolismo , Vesículas Extracelulares/metabolismo , Homeostase , Humanos , Neurônios/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Trocador de Sódio e Cálcio/metabolismo
3.
Mol Neurobiol ; 58(6): 2824-2835, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33511502

RESUMO

In light of previous results, we assessed whether liposomes functionalized with ApoE-derived peptide (mApoE) and phosphatidic acid (PA) (mApoE-PA-LIP) impacted on intracellular calcium (Ca2+) dynamics in cultured human cerebral microvascular endothelial cells (hCMEC/D3), as an in vitro human blood-brain barrier (BBB) model, and in cultured astrocytes. mApoE-PA-LIP pre-treatment actively increased both the duration and the area under the curve (A.U.C) of the ATP-evoked Ca2+ waves in cultured hCMEC/D3 cells as well as in cultured astrocytes. mApoE-PA-LIP increased the ATP-evoked intracellular Ca2+ waves even under 0 [Ca2+]e conditions, thus indicating that the increased intracellular Ca2+ response to ATP is mainly due to endogenous Ca2+ release. Indeed, when Sarco-Endoplasmic Reticulum Calcium ATPase (SERCA) activity was blocked by cyclopiazonic acid (CPA), the extracellular application of ATP failed to trigger any intracellular Ca2+ waves, indicating that metabotropic purinergic receptors (P2Y) are mainly involved in the mApoE-PA-LIP-induced increase of the Ca2+ wave triggered by ATP. In conclusion, mApoE-PA-LIP modulate intracellular Ca2+ dynamics evoked by ATP when SERCA is active through inositol-1,4,5-trisphosphate-dependent (InsP3) endoplasmic reticulum Ca2+ release. Considering that P2Y receptors represent important pharmacological targets to treat cognitive dysfunctions, and that P2Y receptors have neuroprotective effects in neuroinflammatory processes, the enhancement of purinergic signaling provided by mApoE-PA-LIP could counteract Aß-induced vasoconstriction and reduction in cerebral blood flow (CBF). Our obtained results could give an additional support to promote mApoE-PA-LIP as effective therapeutic tool for Alzheimer's disease (AD).


Assuntos
Doença de Alzheimer/patologia , Astrócitos/metabolismo , Encéfalo/patologia , Sinalização do Cálcio , Células Endoteliais/metabolismo , Microvasos/patologia , Receptores Purinérgicos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Retículo Endoplasmático/metabolismo , Células Endoteliais/efeitos dos fármacos , Humanos , Indóis/farmacologia , Lipossomos , Ácidos Fosfatídicos/química , Ratos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
4.
Neuropharmacology ; 164: 107905, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31811874

RESUMO

Oxaliplatin (OHP) Induced Peripheral Neurotoxicity (OIPN) is one of the dose-limiting toxicities of the drug and these adverse effects limit cancer therapy with L-OHP, used for colorectal cancer treatment. Acute neurotoxicity consists of symptoms that are the hallmarks of a transient axonal hyperexcitability; chronic neurotoxicity has a clinical picture compatible with a length-dependent sensory neuropathy. Acute OIPN pathogenesis has been linked to sodium voltage-operated channels (Na + VOC) dysfunction and it has been advocated as a possible predisposing factor to chronic neurotoxicity. We tested if topiramate (TPM), a well-known Na + VOC modulator, was able to modify acute as well as chronic OIPN. The project was divided into two parts. In Experiment 1 we tested by means of Nerve Excitability Testing (NET) a cohort of female Wistar rats to assess TPM effects after a single OHP administration (5 mg/kg, iv). In Experiment 2 we assessed TPM effects after chronic OHP treatment (5 mg/kg, 2qw4ws, iv) using NET, nerve conduction studies (NCS), behavioral tests and neuropathology (caudal nerve morphometry and morphology and Intraepidermal Nerve Fiber [IENF] density). In Experiment 1 TPM was able to prevent OHP effects on Na + VOC: OHP treatment induced a highly significant reduction of the sensory nerve's threshold, during the superexcitability period (p-value = 0.008), whereas TPM co-administration prevented this effect. In Experiment 2 we verified that TPM was able to prevent not only acute phenomena, but also to completely prevent chronic OIPN. This latter observation was supported by a multimodal approach: in fact, only OHP group showed altered findings compared to CTRL group at a neurophysiological (proximal caudal nerve sensory nerve action potential [SNAP] amplitude, p-value = 0.001; distal caudal nerve SNAP amplitude, p-value<0.001, distal caudal nerve sensory conduction velocity, p-value = 0.04), behavioral (mechanical threshold, p-value 0.003) and neuropathological levels (caudal nerve fibers density, p-value 0.001; IENF density, p-value <0.001). Our data show that TPM is a promising drug to prevent both acute and chronic OIPN. These findings have a high translational potential, since they were obtained using outcome measures that match clinical practice and TPM is already approved for clinical use being free from detrimental interaction with OHP anticancer properties.


Assuntos
Antineoplásicos/toxicidade , Axônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Oxaliplatina/antagonistas & inibidores , Oxaliplatina/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/prevenção & controle , Topiramato/farmacologia , Animais , Feminino , Condução Nervosa/efeitos dos fármacos , Medição da Dor , Ratos , Ratos Wistar
5.
Int J Mol Sci ; 20(11)2019 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-31181746

RESUMO

Exposure to ultrafine particles (UFPs) leads to adverse effects on health caused by an unbalanced ratio between UFPs deposition and clearance efficacy. Since air pollution toxicity is first direct to cardiorespiratory system, we compared the acute and sub-acute effects of diesel exhaust particles (DEP) and biomass burning-derived particles (BB) on bronchoalveolar Lavage Fluid (BALf), lung and heart parenchyma. Markers of cytotoxicity, oxidative stress and inflammation were analysed in male BALB/c mice submitted to single and repeated intra-tracheal instillations of 50 µg UFPs. This in-vivo study showed the activation of inflammatory response (COX-2 and MPO) after exposure to UFPs, both in respiratory and cardiovascular systems. Exposure to DEP results also in pro- and anti-oxidant (HO-1, iNOS, Cyp1b1, Hsp70) protein levels increase, although, stress persist only in cardiac tissue under repeated instillations. Statistical correlations suggest that stress marker variation was probably due to soluble components and/or mediators translocation of from first deposition site. This mechanism, appears more important after repeated instillations, since inflammation and oxidative stress endure only in heart. In summary, chemical composition of UFPs influenced the activation of different responses mediated by their components or pro-inflammatory and pro-oxidative molecules, indicating DEP as the most damaging pollutant in the comparison.


Assuntos
Exposição por Inalação/efeitos adversos , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Animais , Biomarcadores/análise , Líquido da Lavagem Broncoalveolar/química , Ciclo-Oxigenase 2/análise , Citocromo P-450 CYP1B1/análise , Proteínas de Choque Térmico HSP70/análise , Heme Oxigenase-1/análise , Inflamação/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/análise
6.
Biomed Res Int ; 2013: 583513, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23509745

RESUMO

Recent studies have suggested a link between inhaled particulate matter (PM) exposure and increased mortality and morbidity associated with cardiorespiratory diseases. Since the response to PM1 has not yet been deeply investigated, its impact on mice lungs and cardiovascular system is here examined. A repeated exposure to Milan PM1 was performed on BALB/c mice. The bronchoalveolar lavage fluid (BALf) and the lung parenchyma were screened for markers of inflammation (cell counts, tumor necrosis factor-α (TNF-α); macrophage inflammatory protein-2 (MIP-2); heme oxygenase-1 (HO-1); nuclear factor kappa-light-chain-enhancer of activated B cells p50 subunit (NFκB-p50); inducible nitric oxide synthetase (iNOS); endothelial-selectin (E-selectin)), cytotoxicity (lactate dehydrogenase (LDH); alkaline phosphatase (ALP); heat shock protein 70 (Hsp70); caspase-8-p18), and a putative pro-carcinogenic marker (cytochrome 1B1 (Cyp1B1)). Heart tissue was tested for HO-1, caspase-8-p18, NFκB-p50, iNOS, E-selectin, and myeloperoxidase (MPO); plasma was screened for markers of platelet activation and clot formation (soluble platelet-selectin (sP-selectin); fibrinogen; plasminogen activator inhibitor 1 (PAI-1)). PM1 triggers inflammation and cytotoxicity in lungs. A similar cytotoxic effect was observed on heart tissues, while plasma analyses suggest blood-endothelium interface activation. These data highlight the importance of lung inflammation in mediating adverse cardiovascular events following increase in ambient PM1 levels, providing evidences of a positive correlation between PM1 exposure and cardiovascular morbidity.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Sistema Cardiovascular/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Material Particulado/efeitos adversos , Animais , Lavagem Broncoalveolar , Doenças Cardiovasculares/induzido quimicamente , Cidades , Relação Dose-Resposta a Droga , Exposição por Inalação , Itália , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Miocárdio/metabolismo , Tamanho da Partícula , Fatores de Tempo
7.
PLoS One ; 8(2): e56636, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23451061

RESUMO

Recent studies have suggested a link between particulate matter (PM) exposure and increased mortality and morbidity associated with pulmonary and cardiovascular diseases; accumulating evidences point to a new role for air pollution in CNS diseases. The purpose of our study is to investigate PM10sum effects on lungs and extra pulmonary tissues. Milano PM10sum has been intratracheally instilled into BALB/c mice. Broncho Alveolar Lavage fluid, lung parenchyma, heart and brain were screened for markers of inflammation (cell counts, cytokines, ET-1, HO-1, MPO, iNOS), cytotoxicity (LDH, ALP, Hsp70, Caspase8-p18, Caspase3-p17) for a putative pro-carcinogenic marker (Cyp1B1) and for TLR4 pathway activation. Brain was also investigated for CD68, TNF-α, GFAP. In blood, cell counts were performed while plasma was screened for endothelial activation (sP-selectin, ET-1) and for inflammation markers (TNF-α, MIP-2, IL-1ß, MPO). Genes up-regulation (HMOX1, Cyp1B1, IL-1ß, MIP-2, MPO) and miR-21 have been investigated in lungs and blood. Inflammation in the respiratory tract of PM10sum-treated mice has been confirmed in BALf and lung parenchyma by increased PMNs percentage, increased ET-1, MPO and cytokines levels. A systemic spreading of lung inflammation in PM10sum-treated mice has been related to the increased blood total cell count and neutrophils percentage, as well as to increased blood MPO. The blood-endothelium interface activation has been confirmed by significant increases of plasma ET-1 and sP-selectin. Furthermore PM10sum induced heart endothelial activation and PAHs metabolism, proved by increased ET-1 and Cyp1B1 levels. Moreover, PM10sum causes an increase in brain HO-1 and ET-1. These results state the translocation of inflammation mediators, ultrafine particles, LPS, metals associated to PM10sum, from lungs to bloodstream, thus triggering a systemic reaction, mainly involving heart and brain. Our results provided additional insight into the toxicity of PM10sum and could facilitate shedding light on mechanisms underlying the development of urban air pollution related diseases.


Assuntos
Material Particulado/toxicidade , Pneumonia/induzido quimicamente , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Coração/efeitos dos fármacos , Imuno-Histoquímica , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
8.
J Biotechnol ; 156(4): 341-6, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21763360

RESUMO

Nanoliposomes containing phosphatidic acid or cardiolipin are able to target in vitro with very high affinity amyloid-ß (Aß), a peptide whose overproduction and progressive aggregation in the brain play a central role in the pathogenesis of Alzheimer's disease. However, the presence of the blood-brain barrier (BBB) severely limits the penetration of either drugs or drug vehicles (nanoparticles) to the brain. Therefore, there is a need to develop and design approaches specifically driving nanoparticles to brain in a better and effective way. The aim of the present investigation is the search of a strategy promoting the interaction of liposomes containing acidic phospholipids with brain capillary endothelial cells, as a first step toward their passage across the BBB. We describe the preparation and physical characterization of nano-sized liposomes decorated with peptides derived from apolipoprotein E and characterize their interaction with human immortalized brain capillary cells cultured in vitro (hCMEC/D3). For this purpose, we synthesized two ApoE-derived peptides (the fragment 141-150 or its tandem dimer) containing a cysteine residue at the C-terminus and decorated NL by exploiting the cysteine reaction with a maleimide-group on the nanoparticle surface. NL without ApoE functionalization did not show either relevant membrane accumulation or cellular uptake, as monitored by confocal microscopy using fluorescently labeled nanoliposomes or quantifying the cell-associated radioactivity of isotopically labeled nanoliposomes. The uptake of nanoliposomes by cell monolayers was enhanced by ApoE-peptide-functionalization, and was higher with the fragment 141-150 than with its tandem dimer. The best performance was displayed by nanoliposomes containing phosphatidic acid and decorated with the ApoE fragment 141-150. Moreover, we show that the functionalization of liposomes containing acidic phospholipids with the ApoE fragment 141-150 scarcely affects their reported ability to bind Aß peptide in vitro. These are important and promising features for the possibility to use these nanoliposomes for the targeting of Aß in the brain districts.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Células Endoteliais/metabolismo , Lipossomos/metabolismo , Nanopartículas/química , Doença de Alzheimer , Apolipoproteínas E/química , Linhagem Celular Transformada , Humanos , Lipossomos/química , Lipossomos/farmacocinética , Microscopia Confocal , Fosfolipídeos , Ligação Proteica , Trítio
9.
Toxicol Lett ; 202(3): 209-17, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21371539

RESUMO

The toxicity of size-fractionated particulate matter (PM10 and PM2.5) collected in Milano during two different seasons (summer and winter) has been evaluated in vivo. The focus is on time related (3 h, 24 h and 1 week) lung response following a single intratracheal aerosolization in BALB/c mice. The bronchoalveolar lavage fluid (BALf) and the lung parenchyma were screened for different markers of inflammation and cytotoxicity. Histology and immunohistochemistry were performed on excised fixed lungs to assess the effects produced by the different PM fractions. All the analyzed inflammatory markers (PMNs percentage, TNF-α, Hsp70 in the BALf, HO-1 in lung parenchyma), increased after summer PM10 administration; on the contrary winter PM10 and PM2.5 specifically increased the amount of the Cyp1B1, a protein putatively involved in the induction of pro-carcinogenic effect. Moreover, we detected an intensification of LDH activity in the BALf after the administration of winter PM10 and PM2.5, potentially related to an in progress necrotic process while after summer PM10 and PM2.5 administration, the initiation of the caspase cascade suggested a cytotoxic effect sustained by apoptosis. Our results evidenced the toxicity mechanisms elicited by size fractionated PM samples, collected in winter and summer seasons, which differs for dimensions, chemical and microbiological composition. PM10 has been indicated to elicit above all a pro-inflammatory response, linked to its specific biological components, while PM2.5 is supposed to be more harmful due to its smaller dimension and the ability to distribute into the lung alveolar districts. We hypothesized that adverse health effects observed after a single dose of winter PM2.5 is at least partly caused by specific winter PM components, i.e. PAH and transitional metals.


Assuntos
Poluentes Atmosféricos/toxicidade , Pulmão/efeitos dos fármacos , Tamanho da Partícula , Material Particulado/toxicidade , Estações do Ano , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Citocromo P-450 CYP1B1 , Proteínas de Choque Térmico HSP70/metabolismo , Heme Oxigenase-1/metabolismo , Itália , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Toxicidade Aguda , Fator de Necrose Tumoral alfa/metabolismo
10.
Toxicol Lett ; 189(3): 206-14, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19501637

RESUMO

Tire particles (TP) represent a significant component of urban air pollution (PM), constituting more than 10% of PM10 mass at urban locations with heavy traffic. The purpose of this study was to evaluate the effects of size-fractionated TP in an animal exposure model frequently used to assess the health effects of air pollutants. Potential pro-inflammatory and toxic effects of TP2.5 (<2.5 microm) and TP10 (<10 microm) were investigated through instillation of suspensions of these materials in BALB/c mice. Bronchoalveolar lavage fluid (BALF) was screened for total protein, lactate dehydrogenase (LDH), alkaline phosphatase (AP), and beta-glucuronidase (B-Gluc) as markers of cytotoxicity; glutathione (GSH) and superoxide dismutase (SOD) as markers of oxidative potential; and tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2), and inflammatory cells as markers of inflammation. Concomitantly, histological analysis of TP-exposed lungs was performed. A single intratracheal instillation of 10 microg/100 microl, 100 microg/100 microl or 200 microg/100 microl was performed, and after 24h mice were euthanized and BALF examined. Inflammatory cellular profiles showed dose-dependent responses after TP10 exposure, while strong cytotoxic effects, including increases in total protein, LDH and AP, were observed to be associated to TP2.5 exposure. Histologically, TP10-treated lungs mainly showed inflammatory tissue infiltration, in contrast to TP2.5-treated lungs, where lysis of the alveolar barrier appeared to be the most characteristic lesion. Our biochemical, cytological, and histological results indicated differential lung toxicity mechanisms elicited by size-fractionated TP, in agreement with other studies performed in in vivo systems that have shown that lung responses to inhaled or instilled particles are affected by particle size. We conclude that lung toxicity induced by TP10 was primarily due to macrophage-mediated inflammatory events, while toxicity induced by TP2.5 appeared to be related more closely to cytotoxicity.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Pneumopatias/induzido quimicamente , Material Particulado/toxicidade , Borracha/toxicidade , Animais , Antioxidantes/metabolismo , Líquido da Lavagem Broncoalveolar , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Intubação Intratraqueal , Pulmão/patologia , Pneumopatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura , Oxirredução , Tamanho da Partícula , Material Particulado/administração & dosagem , Pneumonia/induzido quimicamente , Pneumonia/patologia
11.
Mol Cell Neurosci ; 40(3): 365-73, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19162192

RESUMO

Amyloid-beta (Abeta), a cytotoxic fragment of Amyloid Precursor Protein (APP), has been implicated in the etiopathogenesis of Alzheimer's disease (AD). Since several neurotrophins signalling pathways may be activated in response to toxic insults, we investigated whether a similar response is triggered also by Abeta. After Abeta (25-35) peptide administration to cultured rat hippocampal neurons, the nerve growth factor (NGF) and its receptor (TrkA) mRNA expression is up-regulated. Moreover, we observe an increased cellular TrkA expression (4.5 fold) and NGF release in the culture medium (5-fold). Concomitantly, TrkA, Akt and glycogen synthase kinase 3beta (Gsk3beta) phosphorylation significantly increase. Interestingly, when cells were treated with Abeta (25-35) in the presence of blocking antibody against NGF, only a partial TrkA activation (2-fold) was observed. These results have been confirmed by using pathophysiological Abeta (1-42) oligomers. Our data provide the evidence that Abeta induces the TrkA pathway activation directly by itself and indirectly promoting NGF secretion.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptor trkA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caspases/metabolismo , Células Cultivadas , Ativação Enzimática , Hipocampo/citologia , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Neurônios/citologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptor trkA/genética , Transdução de Sinais/fisiologia
12.
Neurobiol Dis ; 25(3): 675-85, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17188503

RESUMO

Unverricht-Lundborg disease (EPM1), the most common progressive myoclonic epilepsy, is associated with a defect of cystatin B (CSTB), a protease inhibitor. We used CSTB knockout mice to test the hypothesis that EPM1 onset is related to a latent hyperexcitability and that progression depends on higher susceptibility to seizure-induced cell damage. Hippocampal slices prepared from CSTB-deficient mice were hyperexcitable, as they responded to afferent stimuli in CA1 with multiple population spikes and kainate perfusion provoked the appearance of epileptic-like activity earlier than in WT mice. This hyperexcitability may depend on loss of inhibition, because the density of GABA-immunoreactive cells was reduced in the hippocampus of CSTB knockouts. In vivo, CSTB-deficient mice treated with kainate displayed increased susceptibility to seizures, with shorter latency to seizure onset and increased seizure severity compared with WT littermates. Furthermore, a greater degree of neuronal damage was observed in CSTB-deficient than in WT mice after seizures of identical grade, indicating increased susceptibility to seizure-induced cell death.


Assuntos
Cistatinas/genética , Epilepsias Mioclônicas/etiologia , Epilepsias Mioclônicas/fisiopatologia , Síndrome de Unverricht-Lundborg/etiologia , Síndrome de Unverricht-Lundborg/fisiopatologia , Animais , Cistatina B , Modelos Animais de Doenças , Progressão da Doença , Eletrofisiologia , Epilepsias Mioclônicas/induzido quimicamente , Agonistas de Aminoácidos Excitatórios , Predisposição Genética para Doença , Hipocampo/patologia , Hipocampo/fisiologia , Ácido Caínico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia , Degeneração Neural/etiologia , Degeneração Neural/genética , Degeneração Neural/fisiopatologia , Neurônios/patologia , Neurônios/fisiologia , Técnicas de Cultura de Órgãos , Síndrome de Unverricht-Lundborg/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA