RESUMO
OBJECTIVES: Children with congenital heart disease (CHD) undergoing cardiac surgery on cardiopulmonary bypass (CPB) are at risk for systemic inflammation leading to endothelial dysfunction associated with increased morbidity. Bioactive adrenomedullin (bio-ADM) is a peptide regulating vascular tone and endothelial permeability. The aim of this study was to evaluate the dynamics of plasma bio-ADM in this patient cohort and its role in capillary leak. METHODS: Plasma samples from 73 pediatric CHD patients were collected for bio-ADM measurement at five different timepoints (TP) in the pre-, intra-, and post-operative period. The primary endpoint was a net increase in bio-ADM levels after surgery on CPB. Secondary endpoints included association of bio-ADM levels with clinical signs for endothelial dysfunction. RESULTS: Bio-ADM levels increased after surgery on CPB from pre-operative median of 12â¯pg/mL (IQR [interquartile range] 12.0-14.8â¯pg/mL) to a maximum post-operative median of 48.8â¯pg/mL (IQR 34.5-69.6â¯pg/mL, p<0.001). Bio-ADM concentrations correlated positively with post-operative volume balance, (r=0.341; p=0.005), increased demand for vasoactive medication (duration: r=0.415; p<0.001; quantity: TP3: r=0.415, p<0.001; TP4: r=0.414, p<0.001), and hydrocortisone treatment for vasoplegia (bio-ADM median [IQR]:129.1 [55.4-139.2]â¯pg/mL vs. 37.9 [25.2-64.6]â¯pg/mL; p=0.034). Patients who required pleural effusion drainage revealed higher bio-ADM levels compared to those who did not (median [IQR]: 66.4 [55.4-90.9]â¯pg/mL vs. 40.2 [28.2-57.0]â¯pg/mL; p<0.001). CONCLUSIONS: Bio-ADM is elevated in children after cardiac surgery and higher levels correlate with clinical signs of capillary leakage. The peptide should be considered as biomarker for endothelial dysfunction and as potential therapeutic target in this indication.
Assuntos
Procedimentos Cirúrgicos Cardíacos , Cardiopatias Congênitas , Lactente , Humanos , Criança , Adrenomedulina , Ponte Cardiopulmonar , Biomarcadores , Cardiopatias Congênitas/cirurgiaRESUMO
BACKGROUND: Heterozygous familial hypercholesterolemia (FH) represents the most frequent monogenic disorder with an estimated prevalence of 1:250 in the general population. Diagnosis during childhood enables early initiation of preventive measures, reducing the risk of severe consecutive atherosclerotic manifestations. Nevertheless, population-based screening programs for FH are scarce. METHODS: In the VRONI study, children aged 5-14 years in Bavaria are invited to participate in an FH screening program during regular pediatric visits. The screening is based on low-density lipoprotein cholesterol measurements from capillary blood. If exceeding 130 mg/dl (3.34 mmol/l), i.e. the expected 95th percentile in this age group, subsequent molecular genetic analysis for FH is performed. Children with FH pathogenic variants enter a registry and are treated by specialized pediatricians. Furthermore, qualified training centers offer FH-focused training courses to affected families. For first-degree relatives, reverse cascade screening is recommended to identify and treat affected family members. RESULTS: Implementation of VRONI required intensive prearrangements for addressing ethical, educational, data safety, legal and organizational aspects, which will be outlined in this article. Recruitment started in early 2021, within the first months, more than 380 pediatricians screened over 5200 children. Approximately 50 000 children are expected to be enrolled in the VRONI study until 2024. CONCLUSIONS: VRONI aims to test the feasibility of a population-based screening for FH in children in Bavaria, intending to set the stage for a nationwide FH screening infrastructure. Furthermore, we aim to validate genetic variants of unclear significance, detect novel causative mutations and contribute to polygenic risk indices (DRKS00022140; August 2020).
Assuntos
Hiperlipoproteinemia Tipo II , Idoso de 80 Anos ou mais , Criança , Diagnóstico Precoce , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Programas de RastreamentoRESUMO
BACKGROUND: The National Institutes of Health classified Hepatitis E as an emerging disease since Hepatitis E Virus (HEV) is the major cause of acute hepatitis in developing countries. Interestingly, an increasing number of sporadic cases of HEV infections are described in industrialized countries as zoonosis from domestic livestock. Despite the increasing relevance of this pathogen in clinical virology, commercial antibody assays are mainly based on fragments of HEV open reading frame (ORF) 2 and ORF3. The largest ORF1 (poly-)protein, however, is not part of current testing formats. METHODS: From a synthesized full length HEV genotype 1 cDNA-bank we constructed a complete HEV gene library consisting of 15 respective HEV ORF domains. After bacterial expression and purification of nine recombinant HEV proteins under denaturating conditions serum profiling experiments using 55 sera from patients with known infection status were performed in microarray format. SPSS software assessed the antigenic potential of these nine ORF domains in comparison to seven commercial HEV antigens (genotype 1 and 3) by performing receiver operator characteristics, logistic regression and correlation analysis. RESULTS: HEV antigens produced with our method for serum profiling experiments exhibit the same quality and characteristics as commercial antigens. Serum profiling experiments detected Y, V and X domains as ORF1-antigens with potentially comparable diagnostic significance as the well established epitopes of ORF2 and ORF3. However no obvious additional increase in sensitivity or specificity was achieved in diagnostic testing as revealed by bioinformatic analysis. Additionally we found that the C-terminal domain of the potential transmembrane protein ORF3 is responsible for IgG and IgM seroreactivity. Data suggest that there might be a genotype specific seroreactivity of homologous ORF2-antigens. CONCLUSIONS: The diagnostic value of identified ORF1 epitopes might not necessarily improve sensitivity and specificity, but broaden the overall quality of existing test systems. ORF2 and ORF3-antigens are still commonly used in diagnostic assays and possibly hold the potential to serologically differentiate between genotype 1 and 3 infections. Our systematic approach is a suitable method to investigate HEV domains for their serologic antigenicity. Epitope screening of native viral domains could be a preferable tool in developing new serologic test components.