Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 56(6): 1134-1146, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806714

RESUMO

The functional impact and cellular context of mosaic structural variants (mSVs) in normal tissues is understudied. Utilizing Strand-seq, we sequenced 1,133 single-cell genomes from 19 human donors of increasing age, and discovered the heterogeneous mSV landscapes of hematopoietic stem and progenitor cells. While mSVs are continuously acquired throughout life, expanded subclones in our cohort are confined to individuals >60. Cells already harboring mSVs are more likely to acquire additional somatic structural variants, including megabase-scale segmental aneuploidies. Capitalizing on comprehensive single-cell micrococcal nuclease digestion with sequencing reference data, we conducted high-resolution cell-typing for eight hematopoietic stem and progenitor cells. Clonally expanded mSVs disrupt normal cellular function by dysregulating diverse cellular pathways, and enriching for myeloid progenitors. Our findings underscore the contribution of mSVs to the cellular and molecular phenotypes associated with the aging hematopoietic system, and establish a foundation for deciphering the molecular links between mSVs, aging and disease susceptibility in normal tissues.


Assuntos
Células-Tronco Hematopoéticas , Mosaicismo , Humanos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Pessoa de Meia-Idade , Adulto , Análise de Célula Única/métodos , Idoso , Feminino , Masculino , Envelhecimento/genética , Idoso de 80 Anos ou mais , Células-Tronco/metabolismo , Variação Genética
2.
Nat Biotechnol ; 41(6): 832-844, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36424487

RESUMO

Somatic structural variants (SVs) are widespread in cancer, but their impact on disease evolution is understudied due to a lack of methods to directly characterize their functional consequences. We present a computational method, scNOVA, which uses Strand-seq to perform haplotype-aware integration of SV discovery and molecular phenotyping in single cells by using nucleosome occupancy to infer gene expression as a readout. Application to leukemias and cell lines identifies local effects of copy-balanced rearrangements on gene deregulation, and consequences of SVs on aberrant signaling pathways in subclones. We discovered distinct SV subclones with dysregulated Wnt signaling in a chronic lymphocytic leukemia patient. We further uncovered the consequences of subclonal chromothripsis in T cell acute lymphoblastic leukemia, which revealed c-Myb activation, enrichment of a primitive cell state and informed successful targeting of the subclone in cell culture, using a Notch inhibitor. By directly linking SVs to their functional effects, scNOVA enables systematic single-cell multiomic studies of structural variation in heterogeneous cell populations.


Assuntos
Cromotripsia , Leucemia , Neoplasias , Humanos , Neoplasias/genética , Leucemia/genética , Rearranjo Gênico , Linhagem Celular , Variação Estrutural do Genoma
3.
Ann Hum Genet ; 84(2): 125-140, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31711268

RESUMO

The sequence and assembly of human genomes using long-read sequencing technologies has revolutionized our understanding of structural variation and genome organization. We compared the accuracy, continuity, and gene annotation of genome assemblies generated from either high-fidelity (HiFi) or continuous long-read (CLR) datasets from the same complete hydatidiform mole human genome. We find that the HiFi sequence data assemble an additional 10% of duplicated regions and more accurately represent the structure of tandem repeats, as validated with orthogonal analyses. As a result, an additional 5 Mbp of pericentromeric sequences are recovered in the HiFi assembly, resulting in a 2.5-fold increase in the NG50 within 1 Mbp of the centromere (HiFi 480.6 kbp, CLR 191.5 kbp). Additionally, the HiFi genome assembly was generated in significantly less time with fewer computational resources than the CLR assembly. Although the HiFi assembly has significantly improved continuity and accuracy in many complex regions of the genome, it still falls short of the assembly of centromeric DNA and the largest regions of segmental duplication using existing assemblers. Despite these shortcomings, our results suggest that HiFi may be the most effective standalone technology for de novo assembly of human genomes.


Assuntos
Biomarcadores/análise , Variação Genética , Genoma Humano , Haploidia , Mola Hidatiforme/genética , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anotação de Sequência Molecular , Gravidez
4.
Nat Biotechnol ; 38(3): 343-354, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31873213

RESUMO

Structural variation (SV), involving deletions, duplications, inversions and translocations of DNA segments, is a major source of genetic variability in somatic cells and can dysregulate cancer-related pathways. However, discovering somatic SVs in single cells has been challenging, with copy-number-neutral and complex variants typically escaping detection. Here we describe single-cell tri-channel processing (scTRIP), a computational framework that integrates read depth, template strand and haplotype phase to comprehensively discover SVs in individual cells. We surveyed SV landscapes of 565 single cells, including transformed epithelial cells and patient-derived leukemic samples, to discover abundant SV classes, including inversions, translocations and complex DNA rearrangements. Analysis of the leukemic samples revealed four times more somatic SVs than cytogenetic karyotyping, submicroscopic copy-number alterations, oncogenic copy-neutral rearrangements and a subclonal chromothripsis event. Advancing current methods, single-cell tri-channel processing can directly measure SV mutational processes in individual cells, such as breakage-fusion-bridge cycles, facilitating studies of clonal evolution, genetic mosaicism and SV formation mechanisms, which could improve disease classification for precision medicine.


Assuntos
Biologia Computacional/métodos , Variação Estrutural do Genoma , Leucemia/genética , Análise de Célula Única/métodos , Linhagem Celular , Cromotripsia , Evolução Clonal , Rearranjo Gênico , Humanos , Mutação INDEL , Inversão de Sequência , Translocação Genética
5.
Genome Res ; 26(11): 1565-1574, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27646535

RESUMO

Haplotypes are fundamental to fully characterize the diploid genome of an individual, yet methods to directly chart the unique genetic makeup of each parental chromosome are lacking. Here we introduce single-cell DNA template strand sequencing (Strand-seq) as a novel approach to phasing diploid genomes along the entire length of all chromosomes. We demonstrate this by building a complete haplotype for a HapMap individual (NA12878) at high accuracy (concordance 99.3%), without using generational information or statistical inference. By use of this approach, we mapped all meiotic recombination events in a family trio with high resolution (median range ∼14 kb) and phased larger structural variants like deletions, indels, and balanced rearrangements like inversions. Lastly, the single-cell resolution of Strand-seq allowed us to observe loss of heterozygosity regions in a small number of cells, a significant advantage for studies of heterogeneous cell populations, such as cancer cells. We conclude that Strand-seq is a unique and powerful approach to completely phase individual genomes and map inheritance patterns in families, while preserving haplotype differences between single cells.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos Humanos/genética , Haplótipos , Análise de Célula Única/métodos , Linhagem Celular , Projeto HapMap , Recombinação Homóloga , Humanos , Linfócitos/citologia , Linfócitos/metabolismo , Mutação
6.
Genome Res ; 26(11): 1575-1587, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27472961

RESUMO

Identifying genomic features that differ between individuals and cells can help uncover the functional variants that drive phenotypes and disease susceptibilities. For this, single-cell studies are paramount, as it becomes increasingly clear that the contribution of rare but functional cellular subpopulations is important for disease prognosis, management, and progression. Until now, studying these associations has been challenged by our inability to map structural rearrangements accurately and comprehensively. To overcome this, we coupled single-cell sequencing of DNA template strands (Strand-seq) with custom analysis software to rapidly discover, map, and genotype genomic rearrangements at high resolution. This allowed us to explore the distribution and frequency of inversions in a heterogeneous cell population, identify several polymorphic domains in complex regions of the genome, and locate rare alleles in the reference assembly. We then mapped the entire genomic complement of inversions within two unrelated individuals to characterize their distinct inversion profiles and built a nonredundant global reference of structural rearrangements in the human genome. The work described here provides a powerful new framework to study structural variation and genomic heterogeneity in single-cell samples, whether from individuals for population studies or tissue types for biomarker discovery.


Assuntos
Inversão Cromossômica , Genoma Humano , Polimorfismo Genético , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , Adulto , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células Cultivadas , Sangue Fetal/citologia , Humanos , Recém-Nascido , Masculino
7.
Clin Cancer Res ; 21(15): 3428-35, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25869385

RESUMO

PURPOSE: We aimed to assess the prognostic significance of follicular lymphoma-associated macrophages in the era of rituximab treatment and maintenance. EXPERIMENTAL DESIGN: We applied immunohistochemistry for CD68 and CD163 to two large tissue microarrays (TMA). The first TMA included samples from 186 patients from the BC Cancer Agency (BCCA) who had been treated with first-line systemic treatment including rituximab, cyclophosphamide, vincristine, and prednisone. The second contained 395 samples from PRIMA trial patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone, and randomized to rituximab maintenance or observation. Macrophage infiltration was assessed using Aperio image analysis. Each of the two cohorts was randomly split into training/validation sets. RESULTS: An increased CD163-positive pixel count was predictive of adverse outcome in the BCCA dataset [5-year progression-free survival (PFS) 38% vs. 72%, respectively, P = 0.004 in the training cohort and 5-year PFS 29% vs. 61%, respectively, P = 0.004 in the validation cohort]. In the PRIMA trial, an increased CD163 pixel count was associated with favorable outcome (5-year PFS 60% vs. 44%, respectively, P = 0.011 in the training cohort and 5-year PFS 55% vs. 37%, respectively, P = 0.030 in the validation cohort). CONCLUSIONS: CD163-positive macrophages predict outcome in follicular lymphoma, but their prognostic impact is highly dependent on treatment received.


Assuntos
Antígenos CD/biossíntese , Antígenos de Diferenciação Mielomonocítica/biossíntese , Linfoma Folicular/tratamento farmacológico , Linfoma Folicular/genética , Prognóstico , Receptores de Superfície Celular/biossíntese , Rituximab/administração & dosagem , Idoso , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Ciclofosfamida/administração & dosagem , Intervalo Livre de Doença , Doxorrubicina/administração & dosagem , Feminino , Humanos , Linfoma Folicular/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores de Superfície Celular/genética , Análise Serial de Tecidos , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos , Vincristina/administração & dosagem
8.
Blood ; 117(16): 4253-61, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21398220

RESUMO

Src homology 2 domain-containing phosphatase 2 (Shp2), encoded by Ptpn11, is a member of the nonreceptor protein-tyrosine phosphatase family, and functions in cell survival, proliferation, migration, and differentiation in many tissues. Here we report that loss of Ptpn11 in murine hematopoietic cells leads to bone marrow aplasia and lethality. Mutant mice show rapid loss of hematopoietic stem cells (HSCs) and immature progenitors of all hematopoietic lineages in a gene dosage-dependent and cell-autonomous manner. Ptpn11-deficient HSCs and progenitors undergo apoptosis concomitant with increased Noxa expression. Mutant HSCs/progenitors also show defective Erk and Akt activation in response to stem cell factor and diminished thrombopoietin-evoked Erk activation. Activated Kras alleviates the Ptpn11 requirement for colony formation by progenitors and cytokine/growth factor responsiveness of HSCs, indicating that Ras is functionally downstream of Shp2 in these cells. Thus, Shp2 plays a critical role in controlling the survival and maintenance of HSCs and immature progenitors in vivo.


Assuntos
Medula Óssea/patologia , Deleção de Genes , Células-Tronco Hematopoéticas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Animais , Ciclo Celular , Morte Celular , Epistasia Genética , Células-Tronco Hematopoéticas/citologia , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Células-Tronco/citologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA