Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 4: 3017, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24352254

RESUMO

AMP-activated protein kinase (AMPK) plays a major role in regulating cellular energy balance by sensing and responding to increases in AMP/ADP concentration relative to ATP. Binding of AMP causes allosteric activation of the enzyme and binding of either AMP or ADP promotes and maintains the phosphorylation of threonine 172 within the activation loop of the kinase. AMPK has attracted widespread interest as a potential therapeutic target for metabolic diseases including type 2 diabetes and, more recently, cancer. A number of direct AMPK activators have been reported as having beneficial effects in treating metabolic diseases, but there has been no structural basis for activator binding to AMPK. Here we present the crystal structure of human AMPK in complex with a small molecule activator that binds at a site between the kinase domain and the carbohydrate-binding module, stabilising the interaction between these two components. The nature of the activator-binding pocket suggests the involvement of an additional, as yet unidentified, metabolite in the physiological regulation of AMPK. Importantly, the structure offers new opportunities for the design of small molecule activators of AMPK for treatment of metabolic disorders.


Assuntos
Proteínas Quinases Ativadas por AMP/química , Regulação Enzimológica da Expressão Gênica , Monofosfato de Adenosina/química , Trifosfato de Adenosina/química , Sítio Alostérico , Sítios de Ligação , Carboidratos/química , Dicroísmo Circular , Cristalografia por Raios X , Células HEK293 , Humanos , Interferometria , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Treonina/química
2.
Biochem J ; 445(1): 11-27, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22702974

RESUMO

The hydrolysis of ATP drives virtually all of the energy-requiring processes in living cells. A prerequisite of living cells is that the concentration of ATP needs to be maintained at sufficiently high levels to sustain essential cellular functions. In eukaryotic cells, the AMPK (AMP-activated protein kinase) cascade is one of the systems that have evolved to ensure that energy homoeostasis is maintained. AMPK is activated in response to a fall in ATP, and recent studies have suggested that ADP plays an important role in regulating AMPK. Once activated, AMPK phosphorylates a broad range of downstream targets, resulting in the overall effect of increasing ATP-producing pathways whilst decreasing ATP-utilizing pathways. Disturbances in energy homoeostasis underlie a number of disease states in humans, e.g. Type 2 diabetes, obesity and cancer. Reflecting its key role in energy metabolism, AMPK has emerged as a potential therapeutic target. In the present review we examine the recent progress aimed at understanding the regulation of AMPK and discuss some of the latest developments that have emerged in key areas of human physiology where AMPK is thought to play an important role.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Doenças Cardiovasculares/fisiopatologia , Metabolismo Energético , Neoplasias/fisiopatologia , Obesidade/fisiopatologia , Animais , Humanos
3.
Cell Metab ; 14(5): 707-14, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22019086

RESUMO

The SNF1 protein kinase complex plays an essential role in regulating gene expression in response to the level of extracellular glucose in budding yeast. SNF1 shares structural and functional similarities with mammalian AMP-activated protein kinase. Both kinases are activated by phosphorylation on a threonine residue within the activation loop segment of the catalytic subunit. Here we show that ADP is the long-sought metabolite that activates SNF1 in response to glucose limitation by protecting the enzyme against dephosphorylation by Glc7, its physiologically relevant protein phosphatase. We also show that the regulatory subunit of SNF1 has two ADP binding sites. The tighter site binds AMP, ADP, and ATP competitively with NADH, whereas the weaker site does not bind NADH, but is responsible for mediating the protective effect of ADP on dephosphorylation. Mutagenesis experiments suggest that the general mechanism by which ADP protects against dephosphorylation is strongly conserved between SNF1 and AMPK.


Assuntos
Difosfato de Adenosina/metabolismo , Ativação Enzimática/genética , Glucose/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Transdução de Sinais , Difosfato de Adenosina/química , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Sequência de Aminoácidos , Domínio Catalítico/genética , Sequência Conservada , Regulação Fúngica da Expressão Gênica/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteína Fosfatase 1/genética , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Treonina/metabolismo
4.
Nat Chem Biol ; 7(8): 512-8, 2011 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-21769098

RESUMO

Maintaining sufficient levels of ATP (the immediate source of cellular energy) is essential for the proper functioning of all living cells. As a consequence, cells require mechanisms to balance energy demand with supply. In eukaryotic cells the AMP-activated protein kinase (AMPK) cascade has an important role in this homeostasis. AMPK is activated by a fall in ATP (concomitant with a rise in ADP and AMP), which leads to the activation of catabolic pathways and the inhibition of anabolic pathways. Here we review the role of AMPK as an energy sensor and consider the recent finding that ADP, as well as AMP, causes activation of mammalian AMPK. We also review recent progress in structural studies on phosphorylated AMPK that provides a mechanism for the regulation of AMPK in which AMP and ADP protect it against dephosphorylation. Finally, we briefly survey some of the outstanding questions concerning the regulation of AMPK.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Nucleotídeos de Adenina/fisiologia , Metabolismo Energético/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Transdução de Sinais/fisiologia , Especificidade da Espécie
5.
Nature ; 472(7342): 230-3, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21399626

RESUMO

The heterotrimeric AMP-activated protein kinase (AMPK) has a key role in regulating cellular energy metabolism; in response to a fall in intracellular ATP levels it activates energy-producing pathways and inhibits energy-consuming processes. AMPK has been implicated in a number of diseases related to energy metabolism including type 2 diabetes, obesity and, most recently, cancer. AMPK is converted from an inactive form to a catalytically competent form by phosphorylation of the activation loop within the kinase domain: AMP binding to the γ-regulatory domain promotes phosphorylation by the upstream kinase, protects the enzyme against dephosphorylation, as well as causing allosteric activation. Here we show that ADP binding to just one of the two exchangeable AXP (AMP/ADP/ATP) binding sites on the regulatory domain protects the enzyme from dephosphorylation, although it does not lead to allosteric activation. Our studies show that active mammalian AMPK displays significantly tighter binding to ADP than to Mg-ATP, explaining how the enzyme is regulated under physiological conditions where the concentration of Mg-ATP is higher than that of ADP and much higher than that of AMP. We have determined the crystal structure of an active AMPK complex. The structure shows how the activation loop of the kinase domain is stabilized by the regulatory domain and how the kinase linker region interacts with the regulatory nucleotide-binding site that mediates protection against dephosphorylation. From our biochemical and structural data we develop a model for how the energy status of a cell regulates AMPK activity.


Assuntos
Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/metabolismo , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/genética , Animais , Sítios de Ligação , Cristalografia por Raios X , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Cinética , Magnésio/metabolismo , Mamíferos , Modelos Moleculares , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Ligação Proteica , Estrutura Terciária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/genética , Termodinâmica
6.
Neurobiol Learn Mem ; 94(2): 254-62, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20601029

RESUMO

In three experiments, chronic stress enhancement of subsequent fear learning was investigated in C57Bl/6 mice. The first experiment focused on the influence of stressor type on subsequent Pavlovian fear learning. Male mice were subjected to 7d of either repeated restraint stress or chronic variable stress before undergoing a fear conditioning procedure with three tone-shock trials. Subsequent tests were conducted of contextual and tone fear, through measures of the freezing response. Repeated restraint altered pre-training activity and the unconditional response to shock, but was ineffective in influencing conditional fear. Chronic variable stress significantly inflated contextual fear without altering tone fear. In a second experiment, investigating potential sex differences in the fear-enhancing effects of stress, female mice were subjected to the very same procedures. Among females, chronic variable stress selectively altered tone fear, rather than contextual fear. A final experiment investigated the potential role of ovarian hormones by subjecting female mice to either ovariectomy or sham surgery before the stress procedures. Ovariectomy had no significant effect on the ability of stress to enhance fear in females. In sum, the experiments indicate that stressor type significantly influences subsequent fear learning, that males and females are differentially sensitive to fear enhancement by stress, and that the mechanisms mediating these sex differences lie outside of the immediate influence of ovarian hormones. The findings should allow for refinement of animal models of human psychiatric disorders and for further investigations into the genetic and molecular substrates of significant gender differences in fear and anxiety.


Assuntos
Aprendizagem por Associação/fisiologia , Condicionamento Clássico/fisiologia , Medo , Hormônios Esteroides Gonadais/fisiologia , Estresse Psicológico/psicologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ovariectomia , Restrição Física , Fatores Sexuais , Estresse Psicológico/classificação
7.
Biochem J ; 403(1): 139-48, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17147517

RESUMO

AMPK (AMP-activated protein kinase) is activated allosterically by AMP and by phosphorylation of Thr172 within the catalytic alpha subunit. Here we show that mutations in the regulatory gamma subunit reduce allosteric activation of the kinase by AMP. In addition to its allosteric effect, AMP significantly reduces the dephosphorylation of Thr172 by PP (protein phosphatase)2Calpha. Moreover, a mutation in the gamma subunit almost completely abolishes the inhibitory effect of AMP on dephosphorylation. We were unable to detect any effect of AMP on Thr172 phosphorylation by either LKB1 or CaMKKbeta (Ca2+/calmodulin-dependent protein kinase kinase beta) using recombinant preparations of the proteins. However, using partially purified AMPK from rat liver, there was an apparent AMP-stimulation of Thr172 phosphorylation by LKB1, but this was blocked by the addition of NaF, a PP inhibitor. Western blotting of partially purified rat liver AMPK and LKB1 revealed the presence of PP2Calpha in the preparations. We suggest that previous studies reporting that AMP promotes phosphorylation of Thr172 were misinterpreted. A plausible explanation for this effect of AMP is inhibition of dephosphorylation by PP2Calpha, present in the preparations of the kinases used in the earlier studies. Taken together, our results demonstrate that AMP activates AMPK via two mechanisms: by direct allosteric activation and by protecting Thr172 from dephosphorylation. On the basis of our new findings, we propose a simple model for the regulation of AMPK in mammalian cells by LKB1 and CaMKKbeta. This model accounts for activation of AMPK by two distinct signals: a Ca2+-dependent pathway, mediated by CaMKKbeta and an AMP-dependent pathway, mediated by LKB1.


Assuntos
Monofosfato de Adenosina/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Clonagem Molecular , Ativação Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Cinética , Fígado/enzimologia , Modelos Biológicos , Complexos Multienzimáticos/genética , Fosforilação , Fosfotreonina/metabolismo , Proteínas Serina-Treonina Quinases/genética , Ratos , Proteínas Recombinantes/metabolismo
8.
J Neurotrauma ; 23(12): 1802-13, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17184190

RESUMO

Traumatic brain injury (TBI) is a principal cause of long-term physical, cognitive, behavioral, and social deficits in young adults, which frequently coexist with a high incidence of substance abuse disorders. However, few studies have examined the long-term effects of TBI on the neuroendocrine-immune system. TBI was induced in adult male rats under isoflurane anesthesia by cortical contusion injury with a pneumatic piston positioned stereotaxically over the left parietal cortex. Controls underwent sham surgery without injury. At 4 weeks post-injury, the plasma corticosterone response to 30-min restraint stress was significantly blunted in TBI rats compared to the sham controls. One week later, transmitters were implanted for continuous biotelemetric recording of body temperature and spontaneous locomotor activity. At 6 weeks post-injury, the febrile response to i.p. injection of the bacterial endotoxin, lipopolysaccharide (LPS; 50 microg/kg), was significantly lower in TBI than in sham rats. At 8 weeks, swimming in the forced swim test was significantly less in TBI than sham rats. At 9 weeks, rats were rendered ethanol (EtOH) dependent by feeding an EtOH-containing liquid diet for 14 days. Cosine rhythmometry analysis of circadian body temperature Midline Estimating Statistic of Rhythm (MESOR), amplitudes, and acrophases indicated differential effects of EtOH and withdrawal in the two groups. Light- and dark-phase activity analysis indicated that TBI rats were significantly more active than the sham group, and that EtOH and withdrawal differentially affected their activity. Given the extensive interactions of the neuroendocrine-immune systems, these results demonstrate that TBI produces lasting dysregulation amidst the central substrates for allostasis and circadian rhythmicity.


Assuntos
Alostase/fisiologia , Lesões Encefálicas/fisiopatologia , Sistema Imunitário/fisiopatologia , Sistemas Neurossecretores/fisiopatologia , Transtornos Relacionados ao Uso de Álcool/etiologia , Animais , Regulação da Temperatura Corporal/fisiologia , Lesões Encefálicas/sangue , Lesões Encefálicas/psicologia , Ritmo Circadiano/fisiologia , Corticosterona/sangue , Masculino , Atividade Motora/fisiologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA