Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomol Screen ; 7(5): 433-40, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14599359

RESUMO

The catalytic domain of human tumor necrosis factor-alpha (TNF-alpha) converting enzyme (TACE) was expressed in a phage display system to determine whether stable and active enzyme could be made for high-throughput screening (HTS). This would address many issues around screening of proteases in this class. The phage-displayed TACE catalytic domain (PDT) properly cleaved the fusion protein of glutathione S-transferase (GST)-pro-TNF-alpha to generate the mature TNF-alpha in vitro. To determine the utility of the PDT in HTS, the authors further demonstrated that PDT was able to generate a strong reproducible fluorescence signal by cleaving a fluorogenic TNF-alpha-specific peptide in vitro. More important, the catalytic activity of the PDT was inhibited by a broad-spectrum matrix metalloprotease (MMP) inhibitor but not by an MMP-I specific inhibitor, illustrating the potential utility of PDT for HTS. The PDT was also compared with baculovirus-expressed TACE (BET) in these assays to establish the relative efficacy of PDT. Both PDT and BET showed a similar specific cleavage profile against the defined substrates. Activity of the BET, however, was stable at 4 degrees C for less than 24 h. In contrast, the PDT exhibited remarkable stability, losing very little activity even after 2 years at 4 degrees C. On the basis of these results, the authors concluded that the phage display system might be a useful tool for expressing proteins that have stability issues related to auto-proteolytic activity. Furthermore, the ease and low cost of large-scale production of phage should make it suitable for assay development and HTS.


Assuntos
Bioensaio/métodos , Metaloendopeptidases/metabolismo , Biblioteca de Peptídeos , Proteínas/metabolismo , Proteínas ADAM , Proteína ADAM17 , Baculoviridae/genética , Domínio Catalítico , Técnicas de Química Combinatória/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática , Escherichia coli/genética , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/genética , Engenharia de Proteínas/métodos , Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA