Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 16(4): 717-726, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33770495

RESUMO

T cell development is restricted to the thymus and is dependent on high levels of Notch signaling induced within the thymic microenvironment. To understand Notch function in thymic restriction, we investigated the basis for target gene selectivity in response to quantitative differences in Notch signal strength, focusing on the chromatin architecture of genes essential for T cell differentiation. We find that high Notch signal strength is required to activate promoters of known targets essential for T cell commitment, including Il2ra, Cd3ε, and Rag1, which feature low CpG content (LCG) and DNA inaccessibility in hematopoietic stem progenitor cells. Our findings suggest that promoter DNA inaccessibility at LCG T lineage genes provides robust protection against stochastic activation in inappropriate Notch signaling contexts, limiting T cell development to the thymus.


Assuntos
Ilhas de CpG/genética , Regiões Promotoras Genéticas/genética , Receptores Notch/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Animais , DNA/metabolismo , Desoxirribonuclease I/metabolismo , Camundongos Endogâmicos C57BL
2.
Cell Rep ; 31(8): 107676, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32460018

RESUMO

The human genome encodes millions of regulatory elements, of which only a small fraction are active within a given cell type. Little is known about the global impact of chromatin remodelers on regulatory DNA landscapes and how this translates to gene expression. We use precision genome engineering to reawaken homozygously inactivated SMARCA4, a central ATPase of the human SWI/SNF chromatin remodeling complex, in lung adenocarcinoma cells. Here, we combine DNase I hypersensitivity, histone modification, and transcriptional profiling to show that SMARCA4 dramatically increases both the number and magnitude of accessible chromatin sites genome-wide, chiefly by unmasking sites of low regulatory factor occupancy. By contrast, transcriptional changes are concentrated within well-demarcated remodeling domains wherein expression of specific genes is gated by both distal element activation and promoter chromatin configuration. Our results provide a perspective on how global chromatin remodeling activity is translated to gene expression via regulatory DNA.


Assuntos
Montagem e Desmontagem da Cromatina/genética , DNA Helicases/metabolismo , DNA/genética , Expressão Gênica/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Humanos
3.
EBioMedicine ; 41: 427-442, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30827930

RESUMO

BACKGROUND: Transcriptional dysregulation drives cancer formation but the underlying mechanisms are still poorly understood. Renal cell carcinoma (RCC) is the most common malignant kidney tumor which canonically activates the hypoxia-inducible transcription factor (HIF) pathway. Despite intensive study, novel therapeutic strategies to target RCC have been difficult to develop. Since the RCC epigenome is relatively understudied, we sought to elucidate key mechanisms underpinning the tumor phenotype and its clinical behavior. METHODS: We performed genome-wide chromatin accessibility (DNase-seq) and transcriptome profiling (RNA-seq) on paired tumor/normal samples from 3 patients undergoing nephrectomy for removal of RCC. We incorporated publicly available data on HIF binding (ChIP-seq) in a RCC cell line. We performed integrated analyses of these high-resolution, genome-scale datasets together with larger transcriptomic data available through The Cancer Genome Atlas (TCGA). FINDINGS: Though HIF transcription factors play a cardinal role in RCC oncogenesis, we found that numerous transcription factors with a RCC-selective expression pattern also demonstrated evidence of HIF binding near their gene body. Examination of chromatin accessibility profiles revealed that some of these transcription factors influenced the tumor's regulatory landscape, notably the stem cell transcription factor POU5F1 (OCT4). Elevated POU5F1 transcript levels were correlated with advanced tumor stage and poorer overall survival in RCC patients. Unexpectedly, we discovered a HIF-pathway-responsive promoter embedded within a endogenous retroviral long terminal repeat (LTR) element at the transcriptional start site of the PSOR1C3 long non-coding RNA gene upstream of POU5F1. RNA transcripts are induced from this promoter and read through PSOR1C3 into POU5F1 producing a novel POU5F1 transcript isoform. Rather than being unique to the POU5F1 locus, we found that HIF binds to several other transcriptionally active LTR elements genome-wide correlating with broad gene expression changes in RCC. INTERPRETATION: Integrated transcriptomic and epigenomic analysis of matched tumor and normal tissues from even a small number of primary patient samples revealed remarkably convergent shared regulatory landscapes. Several transcription factors appear to act downstream of HIF including the potent stem cell transcription factor POU5F1. Dysregulated expression of POU5F1 is part of a larger pattern of gene expression changes in RCC that may be induced by HIF-dependent reactivation of dormant promoters embedded within endogenous retroviral LTRs.


Assuntos
Retrovirus Endógenos/genética , Epigenômica , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/mortalidade , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Redutases do Citocromo/genética , Retrovirus Endógenos/fisiologia , Regulação Neoplásica da Expressão Gênica , Humanos , Fator 1 Induzível por Hipóxia/genética , Neoplasias Renais/genética , Neoplasias Renais/mortalidade , Neoplasias Renais/patologia , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Diester Fosfórico Hidrolases/genética , Regiões Promotoras Genéticas , Proteínas/genética , Pirofosfatases/genética , RNA Longo não Codificante , Taxa de Sobrevida , Sequências Repetidas Terminais/genética , Enzimas de Conjugação de Ubiquitina/genética
4.
Neuroepigenetics ; 6: 10-25, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27429906

RESUMO

Neural stem progenitor cells (NSPCs) in the human subventricular zone (SVZ) potentially contribute to life-long neurogenesis, yet subtypes of glioblastoma multiforme (GBM) contain NSPC signatures that highlight the importance of cell fate regulation. Among numerous regulatory mechanisms, the post-translational methylations onto histone tails are crucial regulator of cell fate. The work presented here focuses on the role of two repressive chromatin marks tri-methylations on histone H3 lysine 27 (H3K27me3) and histone H4 lysine 20 (H4K20me3) in the adult NSPC within the SVZ. To best model healthy human NSPCs as they exist in vivo for epigenetic profiling of H3K27me3 and H4K20me3, we utilized NSPCs isolated from the adult SVZ of baboon brain (Papio anubis) with brain structure and genomic level similar to human. The putative role of H3K27me3 in normal NSPCs predominantly falls into the regulation of gene expression, cell cycle, and differentiation, whereas H4K20me3 is involved in DNA replication/repair, metabolism, and cell cycle. Using conditional knock-out mouse models to diminish Ezh2 and Suv4-20h responsible for H3K27me3 and H4K20me3, respectively, we found that both repressive marks have irrefutable function for cell cycle regulation in the NSPC population. While both EZH2/H3K27me3 and Suv4-20h/H4K20me3 have implication in cancers, our comparative genomics approach between healthy NSPCs and human GBM specimens revealed that substantial sets of genes enriched with H3K27me3 and H4K20me3 in the NSPCs are altered in the human GBM. In sum, our integrated analyses across species highlight important roles of H3K27me3 and H4K20me3 in normal and disease conditions in the context of NSPC.

5.
Nature ; 518(7539): 360-364, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25693567

RESUMO

Cancer is a disease potentiated by mutations in somatic cells. Cancer mutations are not distributed uniformly along the human genome. Instead, different human genomic regions vary by up to fivefold in the local density of cancer somatic mutations, posing a fundamental problem for statistical methods used in cancer genomics. Epigenomic organization has been proposed as a major determinant of the cancer mutational landscape. However, both somatic mutagenesis and epigenomic features are highly cell-type-specific. We investigated the distribution of mutations in multiple independent samples of diverse cancer types and compared them to cell-type-specific epigenomic features. Here we show that chromatin accessibility and modification, together with replication timing, explain up to 86% of the variance in mutation rates along cancer genomes. The best predictors of local somatic mutation density are epigenomic features derived from the most likely cell type of origin of the corresponding malignancy. Moreover, we find that cell-of-origin chromatin features are much stronger determinants of cancer mutation profiles than chromatin features of matched cancer cell lines. Furthermore, we show that the cell type of origin of a cancer can be accurately determined based on the distribution of mutations along its genome. Thus, the DNA sequence of a cancer genome encompasses a wealth of information about the identity and epigenomic features of its cell of origin.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Epigênese Genética/genética , Mutação/genética , Neoplasias/genética , Neoplasias/patologia , Linhagem Celular Tumoral , Cromatina/química , Período de Replicação do DNA , Epigenômica , Genoma Humano/genética , Humanos , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/genética , Melanoma/patologia , Especificidade de Órgãos/genética
6.
Nat Struct Mol Biol ; 21(11): 969-75, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25282150

RESUMO

To determine which genomic features promote homologous recombination, we created a genome-wide map of gene targeting sites. We used an adeno-associated virus vector to target identical loci introduced as transcriptionally active retroviral vectors. A comparison of ~2,000 targeted and untargeted sites showed that targeting occurred throughout the human genome and was not influenced by the presence of nearby CpG islands, sequence repeats or DNase I-hypersensitive sites. Targeted sites were preferentially located within transcription units, especially when the target loci were transcribed in the opposite orientation to their surrounding chromosomal genes. We determined the impact of DNA replication by mapping replication forks, which revealed a preference for recombination at target loci transcribed toward an incoming fork. Our results constitute the first genome-wide screen of gene targeting in mammalian cells and demonstrate a strong recombinogenic effect of colliding polymerases.


Assuntos
Replicação do DNA , Desoxirribonuclease I/genética , Dependovirus/genética , Genoma Humano , Recombinação Homóloga , Transcrição Gênica , Linhagem Celular Tumoral , Mapeamento Cromossômico , Ilhas de CpG , Desoxirribonuclease I/metabolismo , Loci Gênicos , Vetores Genéticos , Células HEK293 , Humanos
7.
Sci Rep ; 4: 5371, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24947819

RESUMO

Histone 3 lysine 4 trimethylation (H3K4me3) is known to be associated with transcriptionally active or poised genes and required for postnatal neurogenesis within the subventricular zone (SVZ) in the rodent model. Previous comparisons have shown significant correlation between baboon (Papio anubis) and human brain. In this study, we demonstrate that chromatin activation mark H3K4me3 is present in undifferentiated progenitor cells within the SVZ of adult baboon brain. To identify the targets and regulatory role of H3K4me3 within the baboon SVZ, we developed a technique to purify undifferentiated SVZ cells while preserving the endogenous nature without introducing culture artifact to maintain the in vivo chromatin state for genome-wide studies (ChIP-Seq and RNA-Seq). Overall, H3K4me3 is significantly enriched for genes involved in cell cycle, metabolism, protein synthesis, signaling pathways, and cancer mechanisms. Additionally, we found elevated levels of H3K4me3 in the MRI-classified SVZ-associated Glioblastoma Multiforme (GBM), which has a transcriptional profile that reflects the H3K4me3 modifications in the undifferentiated progenitor cells of the baboon SVZ. Our findings highlight the importance of H3K4me3 in coordinating distinct networks and pathways for life-long neurogenesis, and suggest that subtypes of GBM could occur, at least in part, due to aberrant H3K4me3 epigenetic regulation.


Assuntos
Células-Tronco Adultas/fisiologia , Histonas/genética , Ventrículos Laterais/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/genética , Nicho de Células-Tronco/genética , Células-Tronco Adultas/citologia , Animais , Células Cultivadas , Cromatina/genética , Epigênese Genética/genética , Regulação da Expressão Gênica/genética , Marcadores Genéticos/genética , Papio anubis , Ativação Transcricional/genética
8.
Stem Cells Dev ; 23(7): 729-40, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24131213

RESUMO

Marrow stromal cells constitute a heterogeneous population of cells, typically isolated after expansion in culture. In vivo, stromal cells often exist in close proximity or in direct contact with monocyte-derived macrophages, yet their interaction with monocytes is largely unexplored. In this report, isolated CD146(+) and CD146(-) stromal cells, as well as immortalized cell lines representative of each (designated HS27a and HS5, respectively), were shown by global DNase I hypersensitive site mapping and principal coordinate analysis to have a lineage association with marrow fibroblasts. Gene expression profiles generated for the CD146(+) and CD146(-) cell lines indicate significant differences in their respective transcriptomes, which translates into differences in secreted factors. Consequently, the conditioned media (CM) from these two populations induce different fates in peripheral blood monocytes. Monocytes incubated in CD146(+) CM acquire a tissue macrophage phenotype, whereas monocytes incubated in CM from CD146(-) cells express markers associated with pre-dendritic cells. Importantly, when CD14(+) monocytes are cultured in contact with the CD146(+) cells, the combined cell populations, assayed as a unit, show increased levels of transcripts associated with organismal development and hematopoietic regulation. In contrast, the gene expression profile from cocultures of monocytes and CD146(-) cells does not differ from that obtained when monocytes are cultured with CD146(-) CM. These in vitro results show that the CD146(+) marrow stromal cells together with monocytes increase the expression of genes relevant to hematopoietic regulation. In vivo relevance of these data is suggested by immunohistochemistry of marrow biopsies showing juxtaposed CD146(+) cells and CD68(+) cells associated with these upregulated proteins.


Assuntos
Células-Tronco Adultas/citologia , Células da Medula Óssea/citologia , Fibroblastos/citologia , Células-Tronco Mesenquimais/citologia , Monócitos/citologia , Adulto , Células-Tronco Adultas/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Biomarcadores/metabolismo , Células da Medula Óssea/metabolismo , Antígeno CD146/genética , Antígeno CD146/metabolismo , Diferenciação Celular , Linhagem Celular Transformada , Linhagem da Célula/fisiologia , Mapeamento Cromossômico , Citocinas/genética , Citocinas/metabolismo , Desoxirribonuclease I/química , Fibroblastos/metabolismo , Citometria de Fluxo , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Monócitos/metabolismo
9.
Cell ; 154(4): 888-903, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23953118

RESUMO

Cellular-state information between generations of developing cells may be propagated via regulatory regions. We report consistent patterns of gain and loss of DNase I-hypersensitive sites (DHSs) as cells progress from embryonic stem cells (ESCs) to terminal fates. DHS patterns alone convey rich information about cell fate and lineage relationships distinct from information conveyed by gene expression. Developing cells share a proportion of their DHS landscapes with ESCs; that proportion decreases continuously in each cell type as differentiation progresses, providing a quantitative benchmark of developmental maturity. Developmentally stable DHSs densely encode binding sites for transcription factors involved in autoregulatory feedback circuits. In contrast to normal cells, cancer cells extensively reactivate silenced ESC DHSs and those from developmental programs external to the cell lineage from which the malignancy derives. Our results point to changes in regulatory DNA landscapes as quantitative indicators of cell-fate transitions, lineage relationships, and dysfunction.


Assuntos
Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento , Animais , Diferenciação Celular , Transformação Celular Neoplásica , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos , Retroalimentação , Humanos , Camundongos , Células-Tronco/metabolismo
10.
Cell ; 151(1): 153-66, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23021222

RESUMO

Regulatory T (Treg) cells, whose identity and function are defined by the transcription factor Foxp3, are indispensable for immune homeostasis. It is unclear whether Foxp3 exerts its Treg lineage specification function through active modification of the chromatin landscape and establishment of new enhancers or by exploiting a pre-existing enhancer landscape. Analysis of the chromatin accessibility of Foxp3-bound enhancers in Treg and Foxp3-negative T cells showed that Foxp3 was bound overwhelmingly to preaccessible enhancers occupied by its cofactors in precursor cells or a structurally related predecessor. Furthermore, the bulk of Foxp3-bound Treg cell enhancers lacking in Foxp3(-) CD4(+) cells became accessible upon T cell receptor activation prior to Foxp3 expression, and only a small subset associated with several functionally important genes were exclusively Treg cell specific. Thus, in a late cellular differentiation process, Foxp3 defines Treg cell functionality in an "opportunistic" manner by largely exploiting the preformed enhancer network instead of establishing a new enhancer landscape.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Linfócitos T Reguladores/citologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Feminino , Proteína Forkhead Box O1 , Ativação Linfocitária , Camundongos , Organismos Livres de Patógenos Específicos , Linfócitos T Reguladores/metabolismo
11.
Science ; 337(6099): 1190-5, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22955828

RESUMO

Genome-wide association studies have identified many noncoding variants associated with common diseases and traits. We show that these variants are concentrated in regulatory DNA marked by deoxyribonuclease I (DNase I) hypersensitive sites (DHSs). Eighty-eight percent of such DHSs are active during fetal development and are enriched in variants associated with gestational exposure-related phenotypes. We identified distant gene targets for hundreds of variant-containing DHSs that may explain phenotype associations. Disease-associated variants systematically perturb transcription factor recognition sequences, frequently alter allelic chromatin states, and form regulatory networks. We also demonstrated tissue-selective enrichment of more weakly disease-associated variants within DHSs and the de novo identification of pathogenic cell types for Crohn's disease, multiple sclerosis, and an electrocardiogram trait, without prior knowledge of physiological mechanisms. Our results suggest pervasive involvement of regulatory DNA variation in common human disease and provide pathogenic insights into diverse disorders.


Assuntos
DNA/genética , Doença/genética , Variação Genética , Polimorfismo de Nucleotídeo Único , Elementos Reguladores de Transcrição , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo , Alelos , Cromatina/metabolismo , Cromatina/ultraestrutura , Doença de Crohn/genética , Desoxirribonuclease I/metabolismo , Eletrocardiografia , Desenvolvimento Fetal , Feto/metabolismo , Redes Reguladoras de Genes , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Esclerose Múltipla/genética , Fenótipo , Regiões Promotoras Genéticas , Fatores de Transcrição/química , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA