Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39322412

RESUMO

The creatine transporter-1 (CRT-1/SLC6A8) maintains the uphill transport of creatine into cells against a steep concentration gradient. Cellular creatine accumulation is required to support the ATP-buffering by phosphocreatine. More than 60 compounds have been explored in the past for their ability to inhibit cellular creatine uptake, but the number of active compounds is very limited. Here, we show that all currently known inhibitors are full alternative substrates. We analyzed their structure-activity relation for inhibition of CRT-1 to guide a rational approach to the synthesis of novel creatine transporter ligands. Measurements of both, inhibition of [3H]creatine uptake and transport associated currents, allowed for differentiating between full and partial substrates and true inhibitors. This combined approach led to a refined understanding of the structural requirements for binding to CRT-1, which translated into the identification of three novel compounds - i.e. compound 1 (2-(N-benzylcarbamimidamido)acetic acid), and MIPA572 (=carbamimidoylphenylalanine) and MIPA573 (=carbamimidoyltryptophane) that blocked CRT-1 transport, albeit with low affinity. In addition, we found two new alternative full substrates, namely MIP574 (carbamimidoylalanine) and GiDi1257 (1-carbamimidoylazetidine-3-carboxylic acid), which was superior in affinity to all known CTR-1 ligands, and one partial substrate, namely GiDi1254 (1-carbamimidoylpiperidine-4-carboxylic acid). Significance Statement The creatine transporter-1 (CRT-1) is required to maintain intracellular creatine levels. Inhibition of CRT-1 has been recently proposed as a therapeutic strategy for cancer, but pharmacological tools are scarce. In fact, all available inhibitors are alternative substrates. We tested existing and newly synthesized guanidinocarboxylic acids for CRT-1 inhibition and identified three blockers, one partial and two full substrates of CRT-1. Our results support a refined structural understanding of ligand binding to CRT-1 and provide a proof-of-principle for blockage of CRT-1.

2.
Sci Rep ; 8(1): 631, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330525

RESUMO

Inactivation of voltage-gated Na+ channels (VGSC) is essential for the regulation of cellular excitability. The molecular rearrangement underlying inactivation is thought to involve the intracellular linker between domains III and IV serving as inactivation lid, the receptor for the lid (domain III S4-S5 linker) and the pore-lining S6 segements. To better understand the role of the domain IV S6 segment in inactivation we performed a cysteine scanning mutagenesis of this region in rNav 1.4 channels and screened the constructs for perturbations in the voltage-dependence of steady state inactivation. This screen was performed in the background of wild-type channels and in channels carrying the mutation K1237E, which profoundly alters both permeation and gating-properties. Of all tested constructs the mutation I1581C was unique in that the mutation-induced gating changes were strongly influenced by the mutational background. This suggests that I1581 is involved in specific short-range interactions during inactivation. In recently published crystal structures VGSCs the respective amino acids homologous to I1581 appear to control a bend of the S6 segment which is critical to the gating process. Furthermore, I1581 may be involved in the transmission of the movement of the DIII voltage-sensor to the domain IV S6 segment.


Assuntos
Cisteína/genética , Proteínas Musculares/genética , Mutação , Canais de Sódio/genética , Xenopus laevis/genética , Animais , Ativação Enzimática , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas Musculares/química , Estrutura Terciária de Proteína , Ratos , Canais de Sódio/química
3.
Mol Pharmacol ; 88(5): 866-79, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26358763

RESUMO

The clinically important suppression of high-frequency discharges of excitable cells by local anesthetics (LA) is largely determined by drug-induced prolongation of the time course of repriming (recovery from inactivation) of voltage-gated Na(+) channels. This prolongation may result from periodic drug-binding to a high-affinity binding site during the action potentials and subsequent slow dissociation from the site between action potentials ("dissociation hypothesis"). For many drugs it has been suggested that the fast inactivated state represents the high-affinity binding state. Alternatively, LAs may bind with high affinity to a native slow-inactivated state, thereby accelerating the development of this state during action potentials ("stabilization hypothesis"). In this case, slow recovery between action potentials occurs from enhanced native slow inactivation. To test these two hypotheses we produced serial cysteine mutations of domain IV segment 6 in rNav1.4 that resulted in constructs with varying propensities to enter fast- and slow-inactivated states. We tested the effect of the LA lidocaine on the time course of recovery from short and long depolarizing prepulses, which, under drug-free conditions, recruited mainly fast- and slow-inactivated states, respectively. Among the tested constructs the mutation-induced changes in native slow recovery induced by long depolarizations were not correlated with the respective lidocaine-induced slow recovery after short depolarizations. On the other hand, for long depolarizations the mutation-induced alterations in native slow recovery were significantly correlated with the kinetics of lidocaine-induced slow recovery. These results favor the "dissociation hypothesis" for short depolarizations but the "stabilization hypothesis" for long depolarizations.


Assuntos
Anestésicos Locais/farmacologia , Lidocaína/farmacologia , Proteínas Musculares/antagonistas & inibidores , Bloqueadores dos Canais de Sódio/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Proteínas Musculares/fisiologia , Mutagênese , Ratos , Canais de Sódio/fisiologia , Relação Estrutura-Atividade
4.
Addict Biol ; 19(2): 237-239, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22458604

RESUMO

Ibogaine, an alkaloid derived from the African shrub Tabernanthe iboga, has shown promising anti-addictive properties in animals. Anecdotal evidence suggests that ibogaine is also anti-addictive in humans. Thus, it alleviates drug craving and impedes relapse of drug use. Although not licensed as therapeutic drug, and despite evidence that ibogaine may disturb the rhythm of the heart, this alkaloid is currently used as an anti-addiction drug in alternative medicine. Here, we report that therapeutic concentrations of ibogaine reduce currents through human ether-a-go-go-related gene potassium channels. Thereby, we provide a mechanism by which ibogaine may generate life-threatening cardiac arrhythmias.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Comportamento Aditivo/tratamento farmacológico , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ibogaína/farmacologia , Adulto , Animais , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/efeitos adversos , Feminino , Frequência Cardíaca/efeitos dos fármacos , Humanos , Ibogaína/efeitos adversos , Prevenção Secundária
5.
J Pharmacol Exp Ther ; 348(2): 346-58, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24307198

RESUMO

Ibogaine is a psychoactive indole alkaloid. Its use as an antiaddictive agent has been accompanied by QT prolongation and cardiac arrhythmias, which are most likely caused by human ether a go-go-related gene (hERG) potassium channel inhibition. Therefore, we studied in detail the interaction of ibogaine with hERG channels heterologously expressed in mammalian kidney tsA-201 cells. Currents through hERG channels were blocked regardless of whether ibogaine was applied via the extracellular or intracellular solution. The extent of inhibition was determined by the relative pH values. Block occurred during activation of the channels and was not observed for resting channels. With increasing depolarizations, ibogaine block grew and developed faster. Steady-state activation and inactivation of the channel were shifted to more negative potentials. Deactivation was slowed, whereas inactivation was accelerated. Mutations in the binding site reported for other hERG channel blockers (Y652A and F656A) reduced the potency of ibogaine, whereas an inactivation-deficient double mutant (G628C/S631C) was as sensitive as wild-type channels. Molecular drug docking indicated binding within the inner cavity of the channel independently of the protonation of ibogaine. Experimental current traces were fit to a kinetic model of hERG channel gating, revealing preferential binding of ibogaine to the open and inactivated state. Taken together, these findings show that ibogaine blocks hERG channels from the cytosolic side either in its charged form alone or in company with its uncharged form and alters the currents by changing the relative contribution of channel states over time.


Assuntos
Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Antagonistas de Aminoácidos Excitatórios/farmacologia , Alucinógenos/farmacologia , Ibogaína/farmacologia , Antagonistas de Entorpecentes/farmacologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Substituição de Aminoácidos , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular , Citosol/metabolismo , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Antagonistas de Aminoácidos Excitatórios/efeitos adversos , Antagonistas de Aminoácidos Excitatórios/química , Alucinógenos/efeitos adversos , Alucinógenos/química , Humanos , Concentração de Íons de Hidrogênio , Ibogaína/efeitos adversos , Ibogaína/química , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Potenciais da Membrana/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Conformação Molecular , Simulação de Acoplamento Molecular , Proteínas Mutantes/agonistas , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Antagonistas de Entorpecentes/efeitos adversos , Antagonistas de Entorpecentes/química , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
6.
Toxicol Appl Pharmacol ; 273(2): 259-68, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23707769

RESUMO

The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licensed as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 µM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias.


Assuntos
Comportamento Aditivo , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Ibogaína/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Comportamento Aditivo/tratamento farmacológico , Comportamento Aditivo/metabolismo , Relação Dose-Resposta a Droga , Canais de Potássio Éter-A-Go-Go/fisiologia , Feminino , Cobaias , Humanos , Ibogaína/química , Ibogaína/uso terapêutico , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/fisiologia , Miócitos Cardíacos/fisiologia , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/uso terapêutico
7.
J Biol Chem ; 286(44): 38177-38183, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21911500

RESUMO

The Na(+)/K(+) ATPase is an almost ubiquitous integral membrane protein within the animal kingdom. It is also the selective target for cardiotonic derivatives, widely prescribed inhibitors for patients with heart failure. Functional studies revealed that ouabain-sensitive residues distributed widely throughout the primary sequence of the protein. Recently, structural work has brought some consensus to the functional observations. Here, we use a spectroscopic approach to estimate distances between a fluorescent ouabain and a lanthanide binding tag (LBT), which was introduced at five different positions in the Na(+)/K(+) ATPase sequence. These five normally functional LBT-Na(+)/K(+) ATPase constructs were expressed in the cell membrane of Xenopus laevis oocytes, operating under physiological internal and external ion conditions. The spectroscopic data suggest two mutually exclusive distances between the LBT and the fluorescent ouabain. From the estimated distances and using homology models of the LBT-Na(+)/K(+) ATPase constructs, approximate ouabain positions could be determined. Our results suggest that ouabain binds at two sites along the ion permeation pathway of the Na(+)/K(+) ATPase. The external site (low apparent affinity) occupies the same region as previous structural findings. The high apparent affinity site is, however, slightly deeper toward the intracellular end of the protein. Interestingly, in both cases the lactone ring faces outward. We propose a sequential ouabain binding mechanism that is consistent with all functional and structural studies.


Assuntos
Ouabaína/química , ATPase Trocadora de Sódio-Potássio/química , Animais , Sítios de Ligação , Biofísica/métodos , Compostos de Boro/farmacologia , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Membrana/química , Modelos Estatísticos , Oócitos/metabolismo , Ligação Proteica , Conformação Proteica , Espalhamento de Radiação , Raios X , Xenopus laevis
8.
J Biol Chem ; 285(50): 39458-70, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20926383

RESUMO

Voltage-gated ion channels are transmembrane proteins that undergo complex conformational changes during their gating transitions. Both functional and structural data from K(+) channels suggest that extracellular and intracellular parts of the pore communicate with each other via a trajectory of interacting amino acids. No crystal structures are available for voltage-gated Na(+) channels, but functional data suggest a similar intramolecular communication involving the inner and outer vestibules. However, the mechanism of such communication is unknown. Here, we report that amino acid Ile-1575 in the middle of transmembrane segment 6 of domain IV (DIV-S6) in the adult rat skeletal muscle isoform of the voltage-gated sodium channel (rNa(V)1.4) may act as molecular switch allowing for interaction between outer and inner vestibules. Cysteine scanning mutagenesis of the internal part of DIV-S6 revealed that only mutations at site 1575 rescued the channel from a unique kinetic state ("ultra-slow inactivation," I(US)) produced by the mutation K1237E in the selectivity filter. A similar effect was seen with I1575A. Previously, we reported that conformational changes of both the internal and the external vestibule are involved in the generation of I(US). The fact that mutations at site 1575 modulate I(US) produced by K1237E strongly suggests an interaction between these sites. Our data confirm a previously published molecular model in which Ile-1575 of DIV-S6 is in close proximity to Lys-1237 of the selectivity filter. Furthermore, these functional data define the position of the selectivity filter relative to the adjacent DIV-S6 segment within the ionic permeation pathway.


Assuntos
Proteínas Musculares/metabolismo , Canais de Potássio/química , Canais de Sódio/química , Animais , Cisteína/química , Eletrofisiologia/métodos , Feminino , Ativação do Canal Iônico , Isoleucina/química , Cinética , Músculo Esquelético/metabolismo , Mutação , Conformação Proteica , Estrutura Terciária de Proteína , Ratos , Canais de Sódio/metabolismo , Xenopus laevis
9.
Biophys J ; 93(9): L45-7, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17766346

RESUMO

The function of membrane proteins occurs in the context of the cell membrane in living cells acting in concert with various cell components such as other proteins, cofactors, etc. The understanding of the function at the molecular level requires structural techniques, but high resolution structural studies are normally obtained in vitro and in artificial membranes or detergent. Ideally the correlation of structure and function should be carried out in the native environment but most of the techniques applicable in vivo lack the high resolution necessary to track conformational changes on a molecular level. Here we report on the successful application of an improved variant of lanthanide-based resonance energy transfer a fluorescent based technique, to Shaker potassium channels expressed in live Xenopus oocytes. Lanthanide-based resonance energy transfer is particularly suitable to measure intramolecular distances with high resolution. The improvements reported in this work are mainly based on the use of two different small genetically encoded tags (the Lanthanide Binding Tag and the hexa-histidine tag), which due to their small size can be encoded at will in many positions of interest without distorting the protein's function. The technique reported here has the additional improvement that the two tags can be placed independently in contrast to previously described techniques that rely on chemical labeling procedures of thiols.


Assuntos
Genes Reporter , Histidina/genética , Peptídeos/genética , Conformação Proteica , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Transferência Ressonante de Energia de Fluorescência , Histidina/química , Elementos da Série dos Lantanídeos/química , Dados de Sequência Molecular , Peptídeos/química , Coloração e Rotulagem , Xenopus laevis
10.
Biophys J ; 93(12): 4209-24, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17720727

RESUMO

Slow inactivated states in voltage-gated ion channels can be modulated by binding molecules both to the outside and to the inside of the pore. Thus, external K(+) inhibits C-type inactivation in Shaker K(+) channels by a "foot-in-the-door" mechanism. Here, we explore the modulation of a very long-lived inactivated state, ultraslow inactivation (I(US)), by ligand binding to the outer vestibule in voltage-gated Na(+) channels. Blocking the outer vestibule by a mutant mu-conotoxin GIIIA substantially accelerated recovery from I(US). A similar effect was observed if Cd(2+) was bound to a cysteine engineered to the selectivity filter (K1237C). In K1237C channels, exposed to 30 microM Cd(2+), the time constant of recovery from I(US) was decreased from 145.0 +/- 10.2 s to 32.5 +/- 3.3 s (P < 0.001). Recovery from I(US) was only accelerated if Cd(2+) was added to the bath solution during recovery (V = -120 mV) from I(US), but not when the channels were selectively exposed to Cd(2+) during the development of I(US) (-20 mV). These data could be explained by a kinetic model in which Cd(2+) binds with high affinity to a slow inactivated state (I(S)), which is transiently occupied during recovery from I(US). A total of 50 microM Cd(2+) produced an approximately 8 mV hyperpolarizing shift of the steady-state inactivation curve of I(S), supporting this kinetic model. Binding of lidocaine to the internal vestibule significantly reduced the number of channels entering I(US), suggesting that I(US) is associated with a conformational change of the internal vestibule of the channel. We propose a molecular model in which slow inactivation (I(S)) occurs by a closure of the outer vestibule, whereas I(US) arises from a constriction of the internal vestibule produced by a widening of the selectivity filter region. Binding of Cd(2+) to C1237 promotes the closure of the selectivity filter region, thereby hastening recovery from I(US). Thus, Cd(2+) ions may act like a foot-on-the-door, kicking the I(S) gate to close.


Assuntos
Cádmio/metabolismo , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Oócitos/fisiologia , Canais de Sódio/fisiologia , Sódio/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Cinética , Ligação Proteica , Xenopus laevis
11.
Am J Physiol Cell Physiol ; 287(2): C270-80, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15044148

RESUMO

Each skeletal muscle of the body contains a unique composition of "fast" and "slow" muscle fibers, each of which is specialized for certain challenges. This composition is not static, and the muscle fibers are capable of adapting their molecular composition by altered gene expression (i.e., fiber type conversion). Whereas changes in the expression of contractile proteins and metabolic enzymes in the course of fiber type conversion are well described, little is known about possible adaptations in the electrophysiological properties of skeletal muscle cells. Such adaptations may involve changes in the expression and/or function of ion channels. In this study, we investigated the effects of fast-to-slow fiber type conversion on currents via voltage-gated Na+ channels in the C(2)C(12) murine skeletal muscle cell line. Prolonged treatment of cells with 25 nM of the Ca2+ ionophore A-23187 caused a significant shift in myosin heavy chain isoform expression from the fast toward the slow isoform, indicating fast-to-slow fiber type conversion. Moreover, Na+ current inactivation was significantly altered. Slow inactivation less strongly inhibited the Na+ currents of fast-to-slow fiber type-converted cells. Compared with control cells, the Na+ currents of converted cells were more resistant to block by tetrodotoxin, suggesting enhanced relative expression of the cardiac Na+ channel isoform Na(v)1.5 compared with the skeletal muscle isoform Na(v)1.4. These results imply that fast-to-slow fiber type conversion of skeletal muscle cells involves functional adaptation of their electrophysiological properties.


Assuntos
Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Músculo Esquelético/citologia , Canais de Sódio/fisiologia , Animais , Calcimicina/farmacologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Estimulação Elétrica , Ativação do Canal Iônico/fisiologia , Ionóforos/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C3H , Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Lenta/citologia , Cadeias Pesadas de Miosina/fisiologia , Neuroblastoma , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA