Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 994790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439103

RESUMO

Cancer immunotherapy represents a promising approach to specifically target and treat cancer. The most common mechanisms by which monoclonal antibodies kill cells include antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity and apoptosis, but also other mechanisms have been described. 14F7 is an antibody raised against the tumor-associated antigen NeuGc GM3, which was previously reported to kill cancer cells without inducing apoptotic pathways. The antibody was reported to induce giant membrane lesions in tumor cells, with apparent changes in the cytoskeleton. Here, we investigated the effect of humanized 14F7 on HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC) in combination with LC-MS and live cell imaging. 14F7 did not kill the HeLa cells, however, it caused altered protein expression (MS data are available via ProteomeXchange with identifier PXD024320). Several cytoskeletal and nucleic-acid binding proteins were found to be strongly down-regulated in response to antibody treatment, suggesting how 14F7 may induce membrane lesions in cells that contain higher amounts of NeuGc GM3. The altered expression profile identified in this study thus contributes to an improved understanding of the unusual killing mechanism of 14F7.


Assuntos
Neoplasias , Proteômica , Humanos , Células HeLa , Microscopia , Anticorpos Monoclonais
2.
Lab Chip ; 18(22): 3353-3360, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30310892

RESUMO

We introduce a new system which combines metabolic monitoring using electrochemical microsensors with photodynamic therapy on-chip for the first time. Oxygen consumption of T-47D breast cancer cells was measured during therapy with protoporphyrin IX. We determined the efficacy of the therapy and revealed its recovery effects, which underlines the high relevance of continuous monitoring.


Assuntos
Células/metabolismo , Fotoquimioterapia/instrumentação , Análise Serial de Tecidos/instrumentação , Neoplasias da Mama/patologia , Calibragem , Linhagem Celular Tumoral , Eletroquímica , Humanos , Oxigênio/metabolismo , Resultado do Tratamento
3.
Biosensors (Basel) ; 8(2)2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29701726

RESUMO

The Sensing Cell Culture Flask (SCCF) is a cell culture monitoring system accessing the cellular microenvironment in 2D cell culture using electrochemical microsensors. The system is based on microfabricated sensor chips embedded in standard cell culture flasks. Ideally, the sensor chips could be equipped with any electrochemical sensor. Its transparency allows optical inspection of the cells during measurement. The surface of the sensor chip is in-plane with the flask surface allowing undisturbed cell growth on the sensor chip. A custom developed rack system allows easy usage of multiple flasks in parallel within an incubator. The presented data demonstrates the application of the SCCF with brain tumor (T98G) and breast cancer (T-47D) cells. Amperometric oxygen sensors were used to monitor cellular respiration with different incubation conditions. Cellular acidification was accessed with potentiometric pH sensors using electrodeposited iridium oxide films. The system itself provides the foundation for electrochemical monitoring systems in 3D cell culture.


Assuntos
Técnicas Biossensoriais/métodos , Microambiente Celular , Técnicas de Cultura de Células , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA