Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 264(Pt 1): 130623, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447832

RESUMO

α-Lipoic acid (LA), a dietary supplement known for its strong antioxidant and anti-inflammatory potential, faces challenges due to its poor aqueous solubility and thermal instability. To address these issues, herein methyl-beta-cyclodextrin (M-ß-CD) was utilized to create inclusion complex (IC) of LA in 1:1 M stoichiometric ratio of M-ß-CD to LA. The LA-M-ß-CD-IC was further combined with pullulan (PUL), a non-toxic and water-soluble biopolymer, for the development of electrospun nanofibers (NF) by green and sustainable approach. The resulting PUL/LA/M-ß-CD NF formed as a self-standing and flexible material with an average diameter of 569 ± 129 nm and encapsulation efficiency of ∼86.90 %. The developed NF demonstrated an accelerated release, quick dissolution, and disintegration when exposed to artificial saliva replicating the conditions of oral cavity. PUL/LA/M-ß-CD NF attenuated the production of ROS and NO by downregulating pro-inflammatory enzymes (iNOS and COX-2) in lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Moreover, PUL/LA/M-ß-CD NF also significantly downregulated the expression of pro-inflammatory cytokines including TNF-α, IL-6, and IL-1ß along with suppression of NF-ĸB nuclear translocation in comparison to LA (at 250 µM). In nutshell, PUL/LA/M-ß-CD NF demonstrated great potential as a rapid disintegrating delivery system for oral anti-inflammatory treatment due to the enhanced physicochemical characteristics of LA.


Assuntos
Nanofibras , Ácido Tióctico , Humanos , Ácido Tióctico/farmacologia , Lipopolissacarídeos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Macrófagos , NF-kappa B
2.
Drug Discov Today ; 29(4): 103924, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401878

RESUMO

Cancer remains one of the most devastating diseases, necessitating innovative and precise therapeutic solutions. The emergence of 3D bioprinting has revolutionized the platform of cancer therapy by offering bespoke solutions for drug screening, tumor modeling, and personalized medicine. The utilization of 3D bioprinting enables the fabrication of complex tumor models that closely mimic the in vivo microenvironment, facilitating more accurate drug testing and personalized treatment strategies. Moreover, 3D bioprinting also provides a platform for the development of implantable scaffolds as a therapeutic solution to cancer. In this review, we highlight the application of 3D bioprinting for cancer therapy along with current advancements in cancer 3D model development with recent case studies.


Assuntos
Bioimpressão , Neoplasias , Humanos , Impressão Tridimensional , Neoplasias/tratamento farmacológico , Medicina de Precisão , Pesquisa , Engenharia Tecidual , Microambiente Tumoral
3.
Biomater Adv ; 154: 213627, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37748276

RESUMO

The escalating incidences of non-alcoholic fatty liver disease (NAFLD) and associated metabolic disorders are global health concerns. Phloretin (Ph) is a natural phenolic compound, that exhibits a wide array of pharmacological actions including its efficacy towards NAFLD. However, poor solubility and bioavailability of phloretin limits its clinical translation. Here, to address this concern we developed an amorphous solid dispersion of phloretin (Ph-SD) using Soluplus® as a polymer matrix. We further performed solid-state characterization through SEM, P-XRD, FT-IR, and TGA/DSC analysis. Phloretin content, encapsulation efficiency, and dissolution profile of the developed formulation were evaluated through reverse phase HPLC. Finally, the oral bioavailability of Ph-SD and its potential application in the treatment of experimental NAFLD mice was investigated. Results demonstrated that the developed formulation (Ph-PD) augments the dissolution profile and oral bioavailability of the native phloretin (Ph). In NAFLD mice, histopathological studies revealed the preventive effect of Ph-SD on degenerative changes, lipid accumulation, and inflammation in the liver. Ph-SD also improved the serum lipid profile, ALT, and AST levels and lowered the interleukin-6 and tumor necrosis factor-α levels in the liver. Further, Ph-SD reduced fibrotic changes in the liver tissues and attenuates NAFLD progression by blocking the mTOR/SREBP-1c pathway. In a nutshell, the results of our study strongly suggest that Ph-SD has the potential to be a therapeutic candidate in the treatment of NAFLD and can be carried forward for further clinical studies.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Disponibilidade Biológica , Floretina/farmacologia , Floretina/uso terapêutico , Espectroscopia de Infravermelho com Transformada de Fourier , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/uso terapêutico , Lipídeos/uso terapêutico
4.
Foods ; 12(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048184

RESUMO

L-Ascorbic acid (LAA) is a key vitamin, implicated in a variety of physiological processes in humans. Due to its free radical scavenging activity, it is extensively employed as an excipient in pharmaceutical products and food supplements. However, its application is greatly impeded by poor thermal and aqueous stability. Herein, to improve the stability and inhibit oxidative degradation, we prepared LAA-cyclodextrin inclusion complex-incorporated nanofibers (NFs). The continuous variation method (Job plot) demonstrated that LAA forms inclusions with hydroxypropyl-ß-cyclodextrin (HP-ß-CD) at a 2:1 molar stoichiometric ratio. The NFs were prepared via the single step electrospinning technique, without using any polymer matrix. The solid-state characterizations of LAA/HP-ß-CD-NF via powder x-ray diffractometry (PXRD), Fourier-transform infrared (FT-IR) analysis, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and nuclear magnetic resonance (1H NMR and 2D-NOESY) spectroscopy, reveal the effective encapsulation of the LAA (guest molecule) inside the HP-ß-CD (host) cavity. The SEM micrograph reveals an average fiber diameter of ~339 nm. The outcomes of the thermal investigations demonstrated that encapsulation of LAA within HP-ß-CD cavities provides improved thermal stability of LAA (by increasing the thermal degradation temperature). The radical scavenging assay demonstrated the enhanced antioxidant potential of LAA/HP-ß-CD-NF, as compared to native LAA. Overall, the study shows that cyclodextrin inclusion complex-incorporated NFs, are an effective approach for improving the limitations associated with LAA, and provide promising avenues in its therapeutic and food applications.

5.
Drug Discov Today ; 28(6): 103602, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37119962

RESUMO

Covalent organic frameworks (COFs) have gained tremendous interest in cancer therapy owing to their multifunctional properties, such as biocompatibility, tunable cavities, excellent crystallinity, ease of modification/functionalization, and high flexibility. These unique properties offer multiple benefits, such as high loading capacity, prevention from premature leakage, targeted delivery to the tumor microenvironment (TME), and release of therapeutic agents in a controlled manner, which makes them effective and excellent nanoplatforms for cancer therapeutics. In this review, we outline recent advances in using COFs as delivery system for chemotherapeutic agents, photodynamic therapy (PDT), photothermal therapy (PTT), sonodynamic therapy (SDT), cancer diagnostics, and combinatorial therapy for cancer therapeutics. We also summarize current challenges and future directions of this unique research field.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Fotoquimioterapia , Humanos , Estruturas Metalorgânicas/uso terapêutico , Neoplasias/tratamento farmacológico , Microambiente Tumoral
6.
Drug Discov Today ; 27(8): 2288-2299, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35439614

RESUMO

Nanocarriers (NCs) containing targeting ligands have received significant attention in recent years because of their ability to enhance cancer cell recognition, which in turn improves both their accuracy and the therapeutic efficacy of their payloads. A promising approach in this area is the use of dual ligands, in which NCs are functionalized with two different targeting ligands, enabling them to specifically recognize and interact with two different biomarkers present on cancer cells for more efficient targeting compared with single-ligand targeted nanocarriers. Herein, we highlight recent advances in dual-ligand targeted NCs with particular emphasis on their potential for improving therapeutic outcomes for cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Ligantes , Neoplasias/tratamento farmacológico
7.
Methods Mol Biol ; 2279: 213-223, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33683697

RESUMO

Annexin V and propidium iodide staining is widely used for determining the cellular death through apoptosis. In the presence of Ca2+ ions, annexin V has a strong binding affinity for phosphatidylserine, a membrane phospholipid that during apoptosis is translocated from the inner side of the cell membrane to its outer side. On the other hand, propidium iodide has ability for DNA binding and it can only enter into necrotic or late apoptotic cells. This chapter describes a commonly used method for detection of apoptosis in a non-small cell lung cancer cell line using annexin V and propidium iodide dye. We describe the detection of different stages of apoptosis in the A549 lung cancer cell line treated with dihydroartemisinin (DHA). This apoptosis detection method can be used to determine the efficacy of different kinds of drugs on cultured cancer cell lines.


Assuntos
Anexina A5 , Apoptose/efeitos dos fármacos , Artemisininas/farmacologia , Carcinoma Pulmonar de Células não Pequenas , Fluoresceína-5-Isotiocianato/análogos & derivados , Neoplasias Pulmonares , Propídio/química , Células A549 , Anexina A5/química , Anexina A5/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia
8.
Drug Discov Today ; 26(5): 1319-1329, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33359114

RESUMO

Human epidermal growth factor receptor 2 (HER2), a tyrosine kinase receptor with a molecular mass of 185kDa, is overexpressed in several cancers, such as breast, gastric, ovary, prostate, and lung. HER2 is a promising target in cancer therapy because of its crucial role in cell migration, proliferation, survival, angiogenesis, and metastasis through various intracellular signaling cascades. This receptor is an ideal target for the delivery of chemotherapeutic agents because of its accessibility to the extracellular domain. In this review, we highlight different HER2-targeting strategies and various approaches for HER2-targeted delivery systems to improve outcomes for cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias/tratamento farmacológico , Receptor ErbB-2/metabolismo , Animais , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Masculino , Terapia de Alvo Molecular , Neoplasias/patologia
9.
Int J Biol Macromol ; 133: 495-502, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31004634

RESUMO

In recent years, a great deal of attention has been given towards re-purposing and re-innovating the potential drugs. In this regard, dihydroartemisinin (DHA) has been reported to demonstrate anti-proliferative effects on various cancerous cells viz. breast, liver and lung. However, it is associated with some limitations, such as low bioavailability which is hampered by its poor aqueous solubility and its rapid metabolism in systemic circulation. Therefore, in order to overcome these limitations, we synthesized a novel hyaluronic acid-dihydroartemisinin conjugate in which the hydroxyl group of DHA was covalently linked to carboxylic group of hyaluronic acid (HA). The conjugate was successfully characterized using 1H NMR, Fourier transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC). The synthesized conjugate self-assembled into nanoparticles in aqueous solution. The developed nanoparticles were characterized for their average size, zeta potential, Transmission Electron Microscopy (TEM), X-ray Powder Diffraction (XRD) and loading efficiency. The nanoparticles were cytotoxic to lung cancer (A549) cell line which was determined using CCK-8 cell viability assay. This was further supported by Annexin-V-FITC-Propidium iodide apoptosis assay, reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) loss. Conclusively, present findings demonstrate hyaluronic acid conjugates can be used to improve the therapeutic outcomes of anticancer drugs.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Artemisininas/química , Artemisininas/farmacologia , Ácido Hialurônico/química , Neoplasias Pulmonares/patologia , Células A549 , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Artemisininas/síntese química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo
10.
Mater Sci Eng C Mater Biol Appl ; 98: 764-771, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30813082

RESUMO

The present study demonstrated the development of gemcitabine and betulinic acid co-encapsulated PLGA-PEG polymer nanoparticles for enhancing the chemotherapeutic response. This combinatorial PLGA-PEG nanoparticle was formulated using double emulsion and had size <200 nm. The developed nanoparticles were characterized using dynamic light scattering and transmission electron microscopy for their size and shape, respectively. The in vitro release of the drugs from combinatorial nanoparticles was predominantly followed by Fickian diffusion phenomenon. Study on hemocompatibilty approved the administration of this combinatorial nanoparticle for animal study. In vitro cytotoxicity study on Panc1 cells using MTT assay, reactive oxygen species production and cellular apoptotic assay demonstrated that combinatorial nanoparticle was more cytotoxic compared to native drugs solution. Furthermore, the combinatorial nanoparticle suppressed tumor growth more efficiently in Ehrlich (solid) tumor model than the native gemcitabine and betulinic acid at the same concentrations. These findings indicated that PLGA-PEG nanoparticle might be used to co-deliver multiple chemotherapeutic drugs with different properties for enhancing antitumor efficacy.


Assuntos
Desoxicitidina/análogos & derivados , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Triterpenos/química , Apoptose , Linhagem Celular Tumoral , Desoxicitidina/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Humanos , Tamanho da Partícula , Triterpenos Pentacíclicos , Espécies Reativas de Oxigênio/metabolismo , Ácido Betulínico , Gencitabina
11.
Eur J Pharm Sci ; 121: 47-58, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-29777858

RESUMO

In recent years scientific community has drawn a great deal of attention towards understanding the enigma of cluster of differentiation-44 (CD44) in order to deliver therapeutic agents more selectively towards tumor tissues. Moreover, its over-expression in variety of solid tumors has attracted drug delivery researchers to target this receptor with nanomedicines. Conventional nanomedicines based on biodegradable polymers such as poly(lactide-co-glycolide) (PLGA) are often associated with insufficient cellular uptake by cancer cells, due to lack of active targeting moiety on their surface. Therefore, to address this limitation, CD44 targeted PLGA nanomedicines has gained considerable interest for enhancing the efficacy of chemotherapeutic agents. In this review, we have elaborately discussed the recent progress in the design and synthesis of CD44 targeted PLGA nanomedicines used to improve tumor-targeted drug delivery. We have also discussed strategies based on co-targeting of CD44 with other targeting moieties such as folic acid, human epidermal growth factor 2 (HER2), monoclonal antibodies using PLGA based nanomedicines.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Receptores de Hialuronatos/fisiologia , Nanopartículas/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Animais , Humanos , Receptores de Hialuronatos/química , Terapia de Alvo Molecular , Nanomedicina , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Conformação Proteica
12.
Drug Discov Today ; 23(5): 1115-1125, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29481876

RESUMO

In recent years, research has focused on the development of smart nanocarriers that can respond to specific stimuli. Among the various stimuli-responsive platforms for cancer therapy, near-infrared (NIR) light (700-1000nm)-responsive nanocarriers have gained considerable interest because of their deeper tissue penetration capacity, precisely controlled drug release, and minimal damage towards normal tissues. In this review, we outline various therapeutic applications of NIR-responsive nanocarriers in drug delivery, photothermal therapy (PTT), photodynamic therapy (PDT), and bioimaging. We also highlight recent trends towards NIR-responsive combinatorial therapy and multistimuli-responsive nanocarriers for improving therapeutic outcomes.


Assuntos
Portadores de Fármacos/administração & dosagem , Raios Infravermelhos , Nanoestruturas/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Portadores de Fármacos/efeitos da radiação , Humanos , Nanoestruturas/efeitos da radiação
13.
Ann N Y Acad Sci ; 1421(1): 5-18, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29377164

RESUMO

Betulinic acid (BA), a naturally occurring plant-derived pentacyclic triterpenoid, has gained attention in recent years owing to its broad-spectrum biological and medicinal properties. Despite the pharmacological activity of BA, it has been associated with some drawbacks, such as poor aqueous solubility and short half-life in vivo, which limit therapeutic application. To solve these problems, much work in recent years has focused on enhancing BA's aqueous solubility, half-life, and efficacy by using nanoscale drug delivery systems. Several different kinds of nanoscale delivery systems-including polymeric nanoparticles, magnetic nanoparticles, liposomes, polymeric conjugates, nanoemulsions, cyclodextrin complexes, and carbon nanotubes-have been developed for the delivery of BA. Here, we focus on the recent developments of novel nanoformulations used to deliver BA in order to improve its efficacy.


Assuntos
Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Triterpenos/uso terapêutico , Meia-Vida , Humanos , Triterpenos Pentacíclicos , Solubilidade , Triterpenos/química , Triterpenos/farmacocinética , Ácido Betulínico
14.
Int J Pharm ; 531(1): 153-166, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28823888

RESUMO

The clinical application of betulinic acid (BA), a natural pentacyclic triterpenoid with promising antitumor activity, is hampered due to its extremely poor water solubility and relatively short half-life in the systemic circulation. In order to address these issues, herein, we developed betulinic acid loaded polylactide-co-glycolide- monomethoxy polyethylene glycol nanoparticles (PLGA-mPEG NPs). The PLGA-mPEG co-polymer was synthesized and characterized using NMR and FT-IR. BA loaded PLGA-mPEG NPs were prepared by an emulsion solvent evaporation method. The developed nanoparticles had a desirable particle size (∼147nm) and exhibited uniform spherical shape under transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The PLGA-mPEG NPs were able to decrease the uptake by macrophages (i.e. J774A.1 and Raw 264.7 cells) as compared to PLGA nanoparticles. In vitro cytotoxicity in MCF7 and PANC-1 cells demonstrated enhanced cytotoxicity of BA loaded PLGA-mPEG NPs as compared to free BA. The cellular uptake study in both the cell lines demonstrated time dependent uptake behavior. The enhanced cytotoxicity of BA NPs was also supported by increased cellular apoptosis, mitochondrial membrane potential loss, generation of high reactive oxygen species (ROS) and cell cycle arrest. Further, intravenous pharmacokinetics study revealed that BA loaded PLGA-mPEG NPs could prolong the circulation of BA and remarkably enhance half-life by ∼7.21 folds. Consequently, in vivo studies in Ehrlich tumor (solid) model following intravenous administration demonstrated superior antitumor efficacy of BA NPs as compared to native BA. Moreover, BA NPs treated Ehrlich tumor mice demonstrated no biochemical, hematological and histological toxicities. These findings collectively indicated that the BA loaded PLGA-mPEG NPs might serve as a promising nanocarrier for improved therapeutic efficacy of betulinic acid.


Assuntos
Carcinoma de Ehrlich/tratamento farmacológico , Portadores de Fármacos/química , Nanopartículas/química , Triterpenos/administração & dosagem , Animais , Apoptose , Humanos , Células MCF-7 , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Tamanho da Partícula , Triterpenos Pentacíclicos , Poliésteres , Polietilenoglicóis , Poliglactina 910 , Células RAW 264.7 , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Ácido Betulínico
15.
Mater Sci Eng C Mater Biol Appl ; 73: 616-626, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28183653

RESUMO

Betulinic acid (BA), a pentacyclic lupine-type triterpene, is reported to inhibit cell growth in a variety of cancers. However, its efficacy is limited by its poor aqueous solubility and relatively short half-life. In this study, BA-monomethoxy polyethylene glycol (mPEG) conjugate was synthesized by covalent coupling the C-28 carboxylic acid position of BA with amine groups of mPEG, in order to improve its solubility and anticancer efficacy. mPEG-BA conjugate was characterized using various analytical techniques including NMR, FT-IR and MALDI-MS. The mPEG-BA conjugate was cytotoxic, demonstrated internalization and induced cell apoptosis in Hep3B and Huh7 hepatic cancer cells. The western-blot analysis revealed, marked decrease in Bcl-2/Bax ratio, and increase in cleaved-PARP and cleaved-caspase-3 expressions. In vivo studies in Ehrlich ascites tumor (EAT) model following intravenous administration demonstrated significant reduction in tumor volume in case of PEGylated BA as compare to native BA. Furthermore, PEGylated BA treated EAT mice showed no biochemical and histological toxicities. These findings demonstrate the potential of PEGylated BA in cancer therapy, with improved water solubility and efficacy.


Assuntos
Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/farmacologia , Polietilenoglicóis/síntese química , Triterpenos/síntese química , Triterpenos/farmacologia , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Biomarcadores/metabolismo , Western Blotting , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Carcinoma de Ehrlich/sangue , Carcinoma de Ehrlich/tratamento farmacológico , Carcinoma de Ehrlich/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Hemólise/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Triterpenos Pentacíclicos , Polietilenoglicóis/química , Espectroscopia de Prótons por Ressonância Magnética , Ratos Wistar , Solubilidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier , Frações Subcelulares/metabolismo , Triterpenos/química , Triterpenos/uso terapêutico , Ácido Betulínico
16.
Eur J Pharm Sci ; 97: 79-91, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27989859

RESUMO

The overexpression of CD44 in cancer cells reroutes number of oncogenic pathways including the central Pi3K/Akt/NF-kB pathway leading to cancer progression and malignancy. Herein, we developed hyaluronic acid-modified poly(dl-lactic-co-glycolic acid)-poly (ethylene glycol) nanoparticles (PLGA-PEG-HA NPs) for targeted delivery of TTQ (thio-tetrazolyl analog of a clinical candidate, IC87114) to CD44 overexpressing cancer cells. The PLGA-PEG co-polymer was synthesized and characterized by NMR and FTIR. The co-polymer based nanoparticles were prepared by solvent evaporation method and hyaluronic acid (HA) was conjugated on to the nanoparticle surface via EDC/NHS chemistry. The PLGA-PEG-HA NPs had a desirable particle size (<200nm) with reduced polydispersibility and exhibited spherical shape under atomic force microscope (AFM). In vitro cytotoxicity and cellular uptake studies demonstrated higher cytotoxicity and enhanced intracellular accumulation of PLGA-PEG-HA NPs compared to PLGA-PEG NPs in high CD44 expressing MiaPaca-2 cells compared to MDA-MB-231 and MCF7 cells. At the molecular level, the PLGA-PEG-HA NPs were found to be inducing premature senescence with increase in senescence associated ß-galactosidase activity and senescence specific marker p21 expression through modulation of Pi3K/Akt/NF-kB signaling pathway in MiaPaca-2 cells. These findings collectively indicated that HA-modified nanoparticles might serve as a promising nanocarrier for site-specific drug delivery, and can be explored further to increase the therapeutic efficacy of anticancer drugs via targeting to CD44 over-expressing cancer cells.


Assuntos
Antineoplásicos/química , Citotoxinas/química , Receptores de Hialuronatos/biossíntese , Ácido Hialurônico/química , Nanopartículas/química , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Citotoxinas/administração & dosagem , Relação Dose-Resposta a Droga , Composição de Medicamentos , Humanos , Ácido Hialurônico/administração & dosagem , Ácido Láctico/administração & dosagem , Ácido Láctico/química , Células MCF-7 , Nanopartículas/administração & dosagem , Ácido Poliglicólico/administração & dosagem , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
17.
Eur J Pharm Sci ; 93: 147-62, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27531553

RESUMO

Gemcitabine (2',2'-difluoro-2'-deoxycytidine; dFdC) is an efficacious anticancer agent acting against a wide range of solid tumors, including pancreatic, non-small cell lung, bladder, breast, ovarian, thyroid and multiple myelomas. However, short plasma half-life due to metabolism by cytidine deaminase necessitates administration of high dose, which limits its medical applicability. Further, due to its hydrophilic nature, it cannot traverse cell membranes by passive diffusion and, therefore, enters via nucleoside transporters that may lead to drug resistance. To circumvent these limitations, macromolecular prodrugs and nanocarrier-based formulations of Gemcitabine are gaining wide recognition. The nanoformulations based approaches by virtue of their controlled release and targeted delivery have proved to improve bioavailability, increase therapeutic efficacy and reduce adverse effects of the drug. Furthermore, the combination of Gemcitabine with other anticancer agents as well as siRNAs using nanocarriers has also been investigated in order to enhance its therapeutic potential. This review deals with challenges and recent advances in the delivery of Gemcitabine with particular emphasis on macromolecular prodrugs and nanomedicines.


Assuntos
Desoxicitidina/análogos & derivados , Sistemas de Liberação de Medicamentos , Desoxicitidina/administração & dosagem , Desoxicitidina/uso terapêutico , Gencitabina
18.
Int J Pharm ; 492(1-2): 80-91, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26165611

RESUMO

Gemcitabine is one of the most potent anticancer agents acting on a wide range of solid tumors, however, its use is limited by short half life and high dose leading to serious side effects. The present investigation describes the development and characterization of folate functionalized gemcitabine loaded bovine serum albumin nanoparticles (Fa-Gem-BSANPs). The nanoparticles were prepared by desolvation cross-linking technique and characterized for various parameters including morphology, particle size, zeta potential, drug loading and release profile. The particle size of Gem-BSANPs and Fa-Gem-BSANPs was found to be 159.1±5.29 and 208.7±1.80 nm, respectively. DSC and XRD analysis indicated amorphous nature of the drug within the particles. The encapsulated gemcitabine exhibited less hemolytic properties as compared to native drug. The anticancer activity of Fa-Gem-BSANPs was evaluated in folate receptor over expressing cell lines (Ovcar-5 and MCF-7) and folate receptor deficient cell line (MIAPaCa-2). The Fa-Gem-BSANPs showed superior anticancer activity as compared to Gem-BSANPs in Ovcar-5 and MCF-7 cells while no significant difference in cytotoxicity was found with MIAPaCa-2 cells. Confocal microscopy indicated facilitated intracellular uptake of Fa-Gem-BSANPs in MCF-7, which in turn result in a higher potential for apoptosis. Further, Fa-Gem-BSANPs exhibited improved anti-tumor activity in Ehrlich solid tumor model in mice. In conclusion, our study indicates that folate functionalized nanoparticles confer enhance cellular uptake and cytotoxicity for gemcitabine.


Assuntos
Antimetabólitos Antineoplásicos , Desoxicitidina/análogos & derivados , Sistemas de Liberação de Medicamentos , Ácido Fólico , Nanopartículas , Animais , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Ehrlich/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Desoxicitidina/química , Desoxicitidina/farmacologia , Liberação Controlada de Fármacos , Ácido Fólico/administração & dosagem , Ácido Fólico/química , Ácido Fólico/farmacologia , Hemólise/efeitos dos fármacos , Humanos , Masculino , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Soroalbumina Bovina/administração & dosagem , Soroalbumina Bovina/química , Soroalbumina Bovina/farmacologia , Gencitabina
19.
Curr Drug Deliv ; 11(6): 666-86, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24909147

RESUMO

Paclitaxel (PTX), a taxane plant product, is one of the most effective broad-spectrum anti-cancer agents and approved for the treatment of a variety of cancers including ovarian, breast, lung, head and neck as well as Kaposi's sarcoma. Poor aqueous solubility and serious side effects associated with commercial preparation of PTX (Taxol®) triggered the development of alternative PTX formulations. Over past three decades, plethora of research work has been published towards the development of cremophor free and efficient formulations. Various nanocarrier systems including nanoparticles, liposomes, micelles, bioconjugates and dendrimers have been employed in order to improve PTX solubility and eliminate undesired side effects. These nanocarriers offer the advantage of high degree of encapsulation and cellular uptake, escape from elimination by P-glycoprotein (P-gp) mediated efflux, and can be explored for targeted drug delivery. The potential of these nanocarriers is reflected by the fact that various nanocarriers of PTX are in different stages of clinical trials and a few have already been commercialized including Abraxane®, Lipusu and Genexol PM®. This review focuses on the various challenges associated with PTX formulation development, limitations of existing formulations and novel approaches for the development of alternative formulations for PTX and also highlights the development of novel formulations in clinical settings.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Paclitaxel/administração & dosagem , Paclitaxel/química , Animais , Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Química Farmacêutica , Humanos , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Neoplasias/patologia , Paclitaxel/farmacologia , Relação Estrutura-Atividade
20.
Int J Biol Macromol ; 69: 393-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24942992

RESUMO

This investigation described the development of novel PLGA:poloxamer blend nanoparticles for intravenous administration of paclitaxel in order to limit the cremophor-associated adverse effects. The developed formulation was well-characterized using various techniques including scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. The nanoparticles had an average particle size around 180nm and zeta potential of -22.7mV. The in vitro release study of nanoparticles exhibited biphasic release pattern. The non-hemolytic potential of the nanoparticles indicated the suitability of the developed formulation for intravenous administration. The PLGA:poloxamer blend nanoparticles showed significantly improved cytotoxicity in cell lines (MCF-7 and Colo-205), as compared to free drug. Further, the developed formulation was stable under the accelerated storage conditions. In conclusion, the results indicated that the developed polymeric formulation is a novel and potential alternative for the paclitaxel delivery.


Assuntos
Portadores de Fármacos/química , Descoberta de Drogas , Ácido Láctico/química , Nanopartículas/química , Paclitaxel/química , Paclitaxel/farmacologia , Poloxâmero/química , Ácido Poliglicólico/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Hemólise/efeitos dos fármacos , Humanos , Células MCF-7 , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA