Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21246, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481783

RESUMO

Little is known about the molecular mechanisms underlying drug-induced taste disorders, which can cause malnutrition and reduce quality of life. One of taste disorders is known adverse effects of bisphosphonates, which are administered as anti-osteoporotic drugs. Therefore, the present study evaluated the effects of risedronate (a bisphosphonate) on taste bud cells. Expression analyses revealed that farnesyl diphosphate synthase (FDPS, a key enzyme in the mevalonate pathway) was present in a subset of mouse taste bud and tongue epithelial cells, especially type III sour-sensitive taste cells. Other mevalonate pathway-associated molecules were also detected in mouse taste buds. Behavioral analyses revealed that mice administered risedronate exhibited a significantly enhanced aversion to HCl but not for other basic taste solutions, whereas the taste nerve responses were not affected by risedronate. Additionally, the taste buds of mice administered risedronate exhibited significantly lower mRNA expression of desmoglein-2, an integral component of desmosomes. Taken together, these findings suggest that risedronate may interact directly with FDPS to inhibit the mevalonate pathway in taste bud and tongue epithelial cells, thereby affecting the expression of desmoglein-2 related with epithelial barrier function, which may lead to alterations in behavioral responses to HCl via somatosensory nerves.


Assuntos
Difosfonatos , Células Epiteliais , Geraniltranstransferase , Animais , Camundongos , Difosfonatos/farmacologia , Células Epiteliais/enzimologia , Geraniltranstransferase/genética , Qualidade de Vida , Distúrbios do Paladar , Papilas Gustativas/citologia , Língua/citologia , Ácido Risedrônico/farmacologia
2.
NPJ Sci Food ; 5(1): 29, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772952

RESUMO

The aim of this study is to develop a dipeptide showing an adiponectin receptor 1 (AdipoR1) agonistic effect in skeletal muscle L6 myotubes. Based on the structure of the AdipoR1 agonist, AdipoRon, 15 synthetic dipeptides were targeted to promote glucose uptake in L6 myotubes. Tyr-Pro showed a significant increase in glucose uptake among the dipeptides, while other dipeptides, including Pro-Tyr, failed to exert this effect. Tyr-Pro induces glucose transporter 4 (Glut4) expression in the plasma membrane, along with adenosine monophosphate-activated protein kinase (AMPK) activation. In AdipoR1-knocked down cells, the promotion by Tyr-Pro was ameliorated, indicating that Tyr-Pro may directly interact with AdipoR1 as an agonist, followed by the activation of AMPK/Glut4 translocation in L6 myotubes. Molecular dynamics simulations revealed that a Tyr-Pro molecule was stably positioned in the two potential binding pockets (sites 1 and 2) of the seven-transmembrane receptor, AdipoR1, anchored in a virtual 1-palmitoyl-2-oleoyl-phosphatidylcholine membrane. In conclusion, we demonstrated the antidiabetic function of the Tyr-Pro dipeptide as a possible AdipoR1 agonist.

3.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255773

RESUMO

Taste disorders are common adverse effects of cancer chemotherapy that can reduce quality of life and impair nutritional status. However, the molecular mechanisms underlying chemotherapy-induced taste disorders remain largely unknown. Furthermore, there are no effective preventive measures for chemotherapy-induced taste disorders. We investigated the effects of a combination of three anticancer drugs (TPF: docetaxel, cisplatin and 5-fluorouracil) on the structure and function of mouse taste tissues and examined whether the drinking of ice-cold water after TPF administration would attenuate these effects. TPF administration significantly increased the number of cells expressing apoptotic and proliferative markers. Furthermore, TPF administration significantly reduced the number of cells expressing taste cell markers and the magnitudes of the responses of taste nerves to tastants. The above results suggest that anticancer drug-induced taste dysfunction may be due to a reduction in the number of taste cells expressing taste-related molecules. The suppressive effects of TPF on taste cell marker expression and taste perception were reduced by the drinking of ice-cold water. We speculate that oral cryotherapy with an ice cube might be useful for prophylaxis against anticancer drug-induced taste disorders in humans.


Assuntos
Neoplasias de Cabeça e Pescoço/dietoterapia , Gelo , Distúrbios do Paladar/dietoterapia , Água/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Cisplatino/efeitos adversos , Modelos Animais de Doenças , Docetaxel/efeitos adversos , Fluoruracila/efeitos adversos , Neoplasias de Cabeça e Pescoço/complicações , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Camundongos , Distúrbios do Paladar/induzido quimicamente , Distúrbios do Paladar/patologia , Taxoides/efeitos adversos , Água/química
4.
PLoS One ; 15(6): e0235442, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32598404

RESUMO

In this study, we were challenging to identify characteristic compounds in breast cancer cell lines. GC analysis of extracts from the culture media of breast cancer cell lines (MCF-7, SK-BR-3, and YMB-1) using a solid-phase Porapak Q extraction revealed that two compounds of moderate volatility, 1-hexadecanol and 5-(Z)-dodecenoic acid, were detected with markedly higher amount than those in the medium of fibroblast cell line (KMST-6). Furthermore, LC-TOF/MS analysis of the extracts clarified that in addition to the above two fatty acids, the amounts of five unsaturated fatty acids [decenoic acid (C10:1), decadienoic acid (C10:2), 5-(Z)-dodecenoic acid (C12:1), 5-(Z)-tetradecenoic acid (C14:1), and tetradecadienoic acid (C14:2)] in MCF-7 medium were higher than those in medium of KMST-6. Interestingly, H2O2-oxidation of 5-(Z)-dodecenoic acid and 5-(Z)-tetradecenoic acid produced volatile aldehydes that were reported as specific volatiles in breath from various cancer patients, such as heptanal, octanal, nonanal, decanal, 2-(E)-nonenal, and 2-(E)-octenal. Thus, we concluded that these identified compounds over-produced in breast cancer cells in this study could serve as potential precursors producing reported cancer-specific volatiles.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ácidos Graxos/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Ácidos Graxos/análise , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Oxirredução , Microextração em Fase Sólida , Células Tumorais Cultivadas , Compostos Orgânicos Voláteis/análise
5.
J Biol Chem ; 294(13): 4759-4774, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30723160

RESUMO

Class C G protein-coupled receptors (GPCRs) are obligatory dimers that are particularly important for neuronal responses to endogenous and environmental stimuli. Ligand recognition through large extracellular domains leads to the reorganization of transmembrane regions to activate G protein signaling. Although structures of individual domains are known, the complete architecture of a class C GPCR and the mechanism of interdomain coupling during receptor activation are unclear. By screening a mutagenesis library of the human class C sweet taste receptor subunit T1R2, we enhanced surface expression and identified a dibasic intracellular retention motif that modulates surface expression and co-trafficking with its heterodimeric partner T1R3. Using a highly expressed T1R2 variant, dimerization sites along the entire subunit within all the structural domains were identified by a comprehensive mutational scan for co-trafficking with T1R3 in human cells. The data further reveal that the C terminus of the extracellular cysteine-rich domain needs to be properly folded for T1R3 dimerization and co-trafficking, but not for surface expression of T1R2 alone. These results guided the modeling of the T1R2-T1R3 dimer in living cells, which predicts a twisted arrangement of domains around the central axis, and a continuous folded structure between transmembrane domain loops and the cysteine-rich domains. These insights have implications for how conformational changes between domains are coupled within class C GPCRs.


Assuntos
Modelos Biológicos , Multimerização Proteica/fisiologia , Subunidades Proteicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Linhagem Celular , Humanos , Domínios Proteicos , Estrutura Secundária de Proteína , Subunidades Proteicas/genética , Transporte Proteico/fisiologia , Receptores Acoplados a Proteínas G/genética
6.
Lab Invest ; 92(12): 1777-87, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23044922

RESUMO

Nordihydroguaiaretic acid (NDGA) is known to have prominent anticancer activity against several cancers, and is also known to be an inhibitor of 5-lipoxygenase (5-LO). In this study, we investigated the regulatory function of NDGA on inflammatory bone destruction mediated by osteoclasts. NDGA markedly inhibited receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced formation of osteoclasts in cultures of murine osteoclast precursor cell line RAW-D cells and primary bone marrow-derived macrophages culture systems. The inhibitory effect of NDGA on osteoclastogenesis did not arise from the inhibition of 5-LO activity. NDGA did not affect MAPKs, such as p38, JNK, and NF-κB, but significantly inhibited the induction of NFATc1, a key transcription factor for osteoclastogenesis. NDGA also suppressed activation of ERK in osteoclast precursors. RANKL-induced calcium oscillation observed in osteoclast precursors was completely diminished by the addition of NDGA. In mature osteoclasts, RANKL-induced nuclear translocation of NFATc1 was clearly inhibited by NDGA treatment. Finally, in vivo studies demonstrated that administration of NDGA significantly reduced severe bone destruction and osteoclast recruitment in the ankle joint of rats with adjuvant-induced arthritis. These results indicate the potential utility of NDGA as a therapeutic agent for ameliorating inflammatory bone destruction in rheumatoid arthritis.


Assuntos
Artrite Experimental/tratamento farmacológico , Reabsorção Óssea/tratamento farmacológico , Masoprocol/farmacologia , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Reabsorção Óssea/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/genética , Osteíte/tratamento farmacológico , Osteíte/metabolismo , Ligante RANK/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA