Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(1): 474-483, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31802662

RESUMO

It is highly desired but remains a great challenge to develop non-noble metal heterogeneous catalysts to supersede noble metal catalysts for formic acid (FA) dehydrogenation and the corresponding transfer hydrogenation reactions. Herein, we developed a simple and feasible melamine-assisted pyrolysis strategy for the preparation of atomic cobalt-nitrogen (Co-N)-anchored mesoporous carbon with high metal loading (>6.8 wt %) and high specific surface area (750 m2 g-1). Systematic investigation reveals that both the organic carbon source polypyrrole and the nitrogen source melamine are crucial for the successful generation of such Co-N-based materials. The obtained samples (Co-N)n@NC were demonstrated to be highly efficient and robust catalysts for FA dehydrogenation and formylation of quinolines through transfer hydrogenation, exhibiting a very high hydrogen production rate of 16 451 mL·gCo-1·h-1 for FA dehydrogenation and affording excellent yields (up to 99%), selectivity (up to 98%), and stability for transfer hydrogenation. This work may provide a promising route for the fabrication of more low-cost metal-nitrogen catalysts for green fine chemical synthesis.

2.
Mater Sci Eng C Mater Biol Appl ; 98: 910-917, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30813098

RESUMO

The polymeric micelles were prepared through a copolymerization of allyl polyethylene glycol (APEG) and N-isopropylacrylamide in the presence of 2-aminoethanethiol (AET), followed by a ring opening polymerization of γ-benzyl-l-glutamate N-carboxyanhydride (BLG-NCA). Doxorubicin (DOX) as a model drug was covalently conjugated into the core of micelles via hydrazone bonds. The drug loading capacity could reach up to 15% with drug encapsulation efficiency of 80%. The pH/thermo sensitivities were observed in the process of in vitro drug release. The DOX-loaded micelles exhibited accelerated drug release behaviors in an acidic condition, and enhanced therapeutic efficacy was observed. Furthermore, the cytotoxicity of micelles against Hela and 3T3 cells was evaluated before and after drug loading. The DOX-loaded micelles showed strong cytotoxic activity to the cancer cells. But the blank micelles showed non-cytotoxicity. Therefore, the thermo/pH dual-responsive polymeric micelles have a promising future applied as a controlled drug delivery system for anticancer drugs.


Assuntos
Preparações de Ação Retardada/farmacologia , Liberação Controlada de Fármacos , Micelas , Polímeros/química , Células 3T3 , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Polímeros/síntese química , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
3.
Mater Sci Eng C Mater Biol Appl ; 91: 727-733, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30033307

RESUMO

Stimuli-responsive polymeric micelles were prepared through self-assembly of amphiphilic copolymers poly(ethylene glycol)-poly(γ-benzyl l-glutamate), followed by a core-crosslinking reaction using cystamine as the crosslinking agent. The crosslinked micelles with spherical morphologies in nanometer size showed enhanced stability against dilution and concentrated salt solutions compared to the micelles before crosslinking. Doxorubicin (DOX) as a model drug was encapsulated into the core of micelles through electrostatic interactions between carboxylic acid and DOX. In vitro drug release under pH and redox conditions was investigated. Furthermore, the cytotoxicity of micelles was evaluated before and after drug loading. The endocytosis of DOX-loaded micelles and the intracellular drug release were studied. DOX-loaded micelles exhibited accelerated drug release behaviors in an acidic and reductive environment, and showed an inhibited premature release behavior as compared to the noncrosslinked micelles. Considering their enhanced stability, pH and redox dual triggered responsive characteristics, the polymeric micelles can serve as potential systems for controlled drug delivery.


Assuntos
Preparações de Ação Retardada/farmacologia , Micelas , Polímeros/química , Células 3T3 , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Glutamatos/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Oxirredução , Tamanho da Partícula , Polímeros/síntese química
4.
J Biomater Sci Polym Ed ; 29(6): 646-662, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29376484

RESUMO

The enhancement of tumor intracellular drug uptake and resistance against nonspecific protein adsorption are essential for an injectable anticancer drug carrier. In the present study, a new type of redox/pH-responsive zwitterionic nanoparticles (NPs) was prepared using poly-L-glutamic acid and cystamine in aqueous solutions under mild conditions. The NPs showed surface charge convertible feature in response to pH change of the solutions. The NPs demonstrated excellent anti nonspecific protein adsorption. In vitro release profiles of the NPs, they showed redox/pH dual sensitivities in vitro release. The effective intracellular delivery behaviors were verified through investigation of cell viability, and confocal laser scanning microscopy observation of HeLa cells after incubation with the DOX-loaded NPs. The NPs were non-cytotoxic and would have potential applications as a drug delivery vehicle for enhancing intracellular uptake of anticancer drugs.


Assuntos
Cistamina/química , Portadores de Fármacos/química , Nanopartículas/química , Ácido Poliglutâmico/química , Transporte Biológico , Preparações de Ação Retardada , Doxorrubicina/química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidade , Estabilidade de Medicamentos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Espaço Intracelular/metabolismo , Teste de Materiais , Nanopartículas/toxicidade , Oxirredução , Propriedades de Superfície
5.
Mater Sci Eng C Mater Biol Appl ; 79: 116-122, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28628997

RESUMO

Hyperbranched polymer nano micelles (NMs) were prepared through a nucleophilic ring opening polymerization between cystamine and polyethylene glycol diglycidyl ether, followed by a reaction of amino groups and dimethyl maleic anhydride. The NMs showed spheric morphologies with hydrodynamic diameters of 106-120nm. Doxorubicin was loaded in the NMs with loading rate as high as 15.38wt%; The NMs possessed negative zeta potentials in aqueous solutions of pH7.4 due to the carboxyl ions on the particle surfaces, but the zeta potentials were converted to positive ones due to the hydrolysis of amide bonds at pH5.0-6.5, leading to the leaving of carboxyl groups and remaining of amino groups. The disulfide bonds in cystamine were designed in the hyperbranched polymer structures of the NMs, and bonds could be broken by a reducing agent l-glutathione (GSH) (10mM), resulting in a targeted drug release. The smart NMs displayed good biodegradability and biocompatibility, and they could be potentially used in drug controlled release field.


Assuntos
Liberação Controlada de Fármacos , Preparações de Ação Retardada , Doxorrubicina , Concentração de Íons de Hidrogênio , Micelas , Oxirredução , Polietilenoglicóis , Polímeros
6.
Mater Sci Eng C Mater Biol Appl ; 77: 920-926, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28532112

RESUMO

Terpolymers of poly (Lysine-co-N, N-Bis (acryloyl) cystamine-co-ß-Phenethylamine) (PLBP) were synthesized in one-pot by Michael addition terpolymerization. The terpolymers self-assembled into nano-sized spherical micelles (84-123nm) with narrow distributions. The surface charge of the nanomicelles (NMs) was depended on solution's pH and showed negative values under physiological conditions (pH7.4), which was beneficial for long circulation without non-specific protein adsorption. Doxorubicin (DOX) was effectively loaded into the NMs for controlled release. The in vitro release profiles exhibited obvious pH and reduction sensitivities in response to the environment mimicking tumor cells. The MTT assays demonstrated that blank NMs were biocompatible, and drug-laden NMs showed a significant cytotoxicity on Hela cells. The NMs could be potentially applied as smart drug delivery systems in cancer therapy.


Assuntos
Nanoestruturas , Preparações de Ação Retardada , Doxorrubicina , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Micelas , Oxirredução , Fenetilaminas
7.
Chem Commun (Camb) ; 51(57): 11445-8, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26087458

RESUMO

Herein it was found that gas can be utilized as an activator to promote metal-organic framework (MOF) crystallization in IL at room temperature. The ultra-small MOF nanoparticles were obtained, and their size and porosity properties can be easily modulated by controlling gas pressure. The as-synthesized nano-sized Cu-MOF is an excellent candidate catalyst for the solvent-free oxidation of cyclohexene with oxygen.

8.
Chemphyschem ; 16(11): 2317-21, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-25982756

RESUMO

We propose a facile room-temperature synthesis of a metal-organic framework (MOF) with a bimodal mesoporous structure (3.9 and 17-28 nm) in an ionic liquid (IL)/ethylene glycol (EG) mixture. The X-ray diffraction analysis reveals that MOF formation can be efficiently promoted by the presence of the EG/IL interface at room temperature. The MOFs with mesoporous networks are characterized by SEM and TEM. The formation mechanism of the mesoporous MOF in EG/IL mixture is investigated. It is proposed that the EG nanodroplets in the IL work as templates for the formation of the large mesopores. The as-synthesized mesoporous metal-organic framework is an effective and reusable heterogeneous catalyst to catalyze the aerobic oxidation of benzylic alcohols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA