RESUMO
Circulating cell-free DNA (ccfDNA) is used increasingly as a cancer biomarker for prognostication, as a correlate for tumor volume, or as input for downstream molecular analysis. Determining optimal blood processing and ccfDNA quantification are crucial for ccfDNA to serve as an accurate biomarker as it moves into the clinical realm. Whole blood was collected from 50 subjects, processed to plasma, and used immediately or frozen at -80°C. Plasma ccfDNA was extracted and concentration was assessed by real-time quantitative PCR (qPCR), fluorimetry, and droplet digital PCR (ddPCR). For the 24 plasma samples from metastatic pancreatic cancer patients, the variant allele fractions (VAF) of KRAS G12/13 pathogenic variants in circulating tumor DNA (ctDNA) were measured by ddPCR. Using a high-speed (16,000 × g) or slower-speed (4100 × g) second centrifugation step showed no difference in ccfDNA yield or ctDNA VAF. A two- versus three-spin centrifugation protocol also showed no difference in ccfDNA yield or ctDNA VAF. A higher yield was observed from fresh versus frozen plasma by qPCR and fluorimetry, whereas a higher yield was observed for frozen versus fresh plasma by ddPCR, however, no difference was observed in ctDNA VAF. Overall, our findings suggest factors to consider when implementing a ccfDNA extraction and quantification workflow in a research or clinical setting.
Assuntos
Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/genética , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Técnicas de Diagnóstico Molecular/métodos , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Alelos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Coleta de Amostras Sanguíneas/métodos , Carcinoma Ductal Pancreático/patologia , Estudos de Casos e Controles , DNA Tumoral Circulante/isolamento & purificação , Estudos de Coortes , Humanos , Mutação , Metástase Neoplásica , Neoplasias Pancreáticas/patologiaRESUMO
BACKGROUND: We aimed to determine whether plasma cell-free DNA (cfDNA) concentration is associated with survival in patients with isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM). METHODS: Pre-operative and post-chemoradiotherapy blood samples were prospectively collected from patients with newly diagnosed IDH wild-type GBM. Patients underwent surgical resection or biopsy and received adjuvant radiotherapy with concomitant temozolomide. Cell-free DNA (cfDNA) was isolated from plasma and quantified using SYBR Green-based q polymerase chain reaction (qPCR). RESULTS: Sixty-two patients were enrolled and categorized into high vs. low cfDNA groups relative to the pre-operative median value (25.2 ng/mL, range 5.7-153.0 ng/mL). High pre-operative cfDNA concentration was associated with inferior PFS (median progression-free survival (PFS), 3.4 vs. 7.7 months; log-rank P = .004; hazard ratio [HR], 2.19; 95% CI, 1.26-3.81) and overall survival (OS) (median OS, 8.0 vs. 13.9 months; log-rank P = .01; HR, 2.43; 95% CI, 1.19-4.95). After adjusting for risk factors, including O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status, pre-operative cfDNA remained independently associated with PFS (HR, 2.70; 95% CI, 1.50-4.83; P = .001) and OS (HR, 2.65; 95% CI, 1.25-5.59; P = .01). Post-hoc analysis of change in cfDNA post-chemoradiotherapy compared to pre-surgery (n = 24) showed increasing cfDNA concentration was associated with worse PFS (median, 2.7 vs. 6.0 months; log-rank P = .003; HR, 4.92; 95% CI, 1.53-15.84) and OS (median, 3.9 vs. 19.4 months; log-rank P < .001; HR, 7.77; 95% CI, 2.17-27.76). CONCLUSIONS: cfDNA concentration is a promising prognostic biomarker for patients with IDH wild-type GBM. Plasma cfDNA can be obtained noninvasively and may enable more accurate estimates of survival and effective clinical trial stratification.