Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 168(1): 148-173, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30767228

RESUMO

Withania somnifera (Ashwagandha) is considered as Rasayana in Indian systems of medicine. This study reports a novel transcriptome of W. somnifera berries, with high depth, quality and coverage. Assembled and annotated transcripts for nearly all genes related with the withanolide biosynthetic pathway were obtained. Tissue-wide gene expression analysis reflected almost similar definitions for the terpenoid pathway in leaf, root and berry tissues with relatively higher abundance of transcripts linked to steroid, phenylpropanoid metabolism as well as flavonoid metabolism in berries. The metabolome map generated from the data embodied transcripts from 143 metabolic pathways connected together and mediated collectively by about 1792 unique enzyme functions specific to berry, leaf and root tissues, respectively. Transcripts specific to cytochrome p450 (CYP450), methyltransferases and glycosyltransferases were distinctively located in a tissue specific manner and exhibited a complex network. Significant distribution of transcription factor genes such as MYB, early light inducible protein (ELI), minichromosome maintenance1, agamous, deficiens and serum response factor (MADS) and WRKY etc. was observed, as the major transcriptional regulators of secondary metabolism. Validation of the assembly was ascertained by cloning WsELI, which has a light dependent regulatory role in development. Quantitative expression of WsELI was observed to be considerably modulated upon exposure to abiotic stress and elicitors. Co-relation of over-expression of WsELI, may provide new aspects for the functional role of ELI proteins in plants linked to secondary metabolism. The study offers the first comprehensive and comparative evaluation of W. somnifera transcriptome data between the three tissues and across other members of Solanaceae (Nicotiana, Solanum and Capsicum) with respect to major pathways and their metabolome regulation.


Assuntos
Frutas/metabolismo , Metabolismo Secundário , Transcriptoma , Withania/metabolismo , Vitanolídeos/metabolismo , Frutas/genética , Genes de Plantas , Withania/genética
2.
Protoplasma ; 256(4): 893-907, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30656458

RESUMO

Ocimum species commonly referred to as "Tulsi" are well-known for their distinct medicinal and aromatic properties. The characteristic aroma of Ocimum species and cultivars is attributed to their specific combination of volatile phytochemicals mainly belonging to terpenoid and/or phenylpropanoid classes in their essential oils. The essential oil constituents are synthesized and sequestered in specialized epidermal secretory structures called as glandular trichomes. In this comparative study, inter- and intra-species diversity in structural attributes and profiles of expression of selected genes related to terpenoid and phenylpropanoid biosynthetic pathways have been investigated. This is performed to seek relationship of variations in the yield and phytochemical composition of the essential oils. Microscopic analysis of trichomes of O. basilicum, O. gratissimum, O. kilimandscharicum, and O. tenuiflorum (green and purple cultivars) revealed substantial variations in density, size, and relative proportions of peltate and capitate trichomes among them. The essential oil yield has been observed to be controlled by the population, dominance, and size of peltate and capitate glandular trichomes. The essential oil sequestration in leaf is controlled by the dominance of peltate glandular trichome size over its number and is also affected by the capitate glandular trichome size/number with variations in leaf area albeit at lower proportions. Comprehension and comparison of results of GC-MS analysis of essential oils showed that most of the Ocimum (O. basilicum, O. tenuiflorum, and O. gratissimum) species produce phenylpropanoids (eugenol, methyl chavicol) as major volatiles except O. kilimandscharicum, which is discrete in being monoterpenoid-rich species. Among the phenylpropanoid-enriched Ocimum (O. basilicum, O. gratissimum, O. tenuiflorum purple, O. tenuiflorum green) as well, terpenoids were important constituents in imparting characteristic aroma. Further, comparative abundance of transcripts of key genes of phenylpropanoid (PAL, C4H, 4CL, CAD, COMT, and ES) and terpenoid (DXS and HMGR) biosynthetic pathways was evaluated vis-à-vis volatile oil constituents. Transcript abundance demonstrated that richness of their essential oils with specific constituent(s) of a chemical group/subgroup was manifested by the predominant upregulation of phenylpropanoid/terpenoid pathway genes. The study provides trichomes as well as biosynthetic pathway-based knowledge for genetic improvement in Ocimum species for essential oil yield and quality.


Assuntos
Ocimum/metabolismo , Óleos Voláteis/química , Óleos Voláteis/metabolismo , Tricomas/metabolismo , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Monoterpenos/metabolismo , Ocimum/genética , Folhas de Planta/anatomia & histologia , Óleos de Plantas/química , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Tricomas/fisiologia , Tricomas/ultraestrutura
3.
Sci Rep ; 7(1): 16649, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192149

RESUMO

Transcription factors (TFs) are important regulators of cellular and metabolic functions including secondary metabolism. Deep and intensive RNA-seq analysis of Withania somnifera using transcriptomic databases provided 3532 annotated transcripts of transcription factors in leaf and root tissues, belonging to 90 different families with major abundance for WD-repeat (174 and 165 transcripts) and WRKY (93 and 80 transcripts) in root and leaf tissues respectively, followed by that of MYB, BHLH and AP2-ERF. Their detailed comparative analysis with Arabidopsis thaliana, Capsicum annum, Nicotiana tabacum and Solanum lycopersicum counterparts together gave interesting patterns. However, no homologs for WsWDR representatives, LWD1 and WUSCHEL, were observed in other Solanaceae species. The data extracted from the sequence read archives (SRA) in public domain databases were subjected to re-annotation, re-mining, re-analysis and validation for dominant occurrence of WRKY and WD-repeat (WDR) gene families. Expression of recombinant LWD1 and WUSCHEL proteins in homologous system led to enhancements in withanolide content indicating their regulatory role in planta in the biosynthesis. Contrasting expression profiles of WsLWD1 and WsWUSCHEL provided tissue-specific insights for their participation in the regulation of developmental processes. The in-depth analysis provided first full-spectrum and comparative characteristics of TF-transcripts across plant species, in the perspective of integrated tissue-specific regulation of metabolic processes including specialized metabolism.


Assuntos
Perfilação da Expressão Gênica , Fatores de Transcrição/genética , Transcriptoma , Withania/genética , Withania/metabolismo , Vitanolídeos/metabolismo , Cromatografia Líquida de Alta Pressão , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Metaboloma , Metabolômica/métodos , Filogenia , Fatores de Transcrição/metabolismo , Withania/classificação
4.
BMC Res Notes ; 6: 125, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23537338

RESUMO

BACKGROUND: High quality RNA is a primary requisite for numerous molecular biological applications but is difficult to isolate from several plants rich in polysaccharides, polyphenolics and other secondary metabolites. These compounds either bind with nucleic acids or often co-precipitate at the final step and many times cannot be removed by conventional methods and kits. Addition of vinyl-pyrollidone polymers in extraction buffer efficiently removes polyphenolics to some extent, but, it failed in case of Azadirachta indica and several other medicinal and aromatic plants. FINDINGS: Here we report the use of adsorption property of activated charcoal (0.03%-0.1%) in RNA isolation procedures to remove complex secondary metabolites and polyphenolics to yield good quality RNA from Azadirachta indica. We tested and validated our modified RNA isolation method across 21 different plants including Andrographis paniculata, Aloe vera, Rosa damascena, Pelargonium graveolens, Phyllanthus amarus etc. from 13 other different families, many of which are considered as tough system for isolating RNA. The A260/280 ratio of the extracted RNA ranged between 1.8-2.0 and distinct 28S and 18S ribosomal RNA bands were observed in denaturing agarose gel electrophoresis. Analysis using Agilent 2100 Bioanalyzer revealed intact total RNA yield with very good RNA Integrity Number. CONCLUSIONS: The RNA isolated by our modified method was found to be of high quality and amenable for sensitive downstream molecular applications like subtractive library construction and RT-PCR. This modified RNA isolation procedure would aid and accelerate the biotechnological studies in complex medicinal and aromatic plants which are extremely rich in secondary metabolic compounds.


Assuntos
Azadirachta/química , Carvão Vegetal/química , Extratos Vegetais/farmacologia , Polifenóis/química , Polissacarídeos/química , RNA de Plantas/isolamento & purificação , RNA Ribossômico/isolamento & purificação , Eletroforese em Gel de Ágar , Etiquetas de Sequências Expressas , Biblioteca Gênica , Hibridização de Ácido Nucleico , Extratos Vegetais/química , RNA de Plantas/análise , RNA Ribossômico/análise
5.
Protoplasma ; 250(2): 613-22, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22936023

RESUMO

Withania somnifera (L.) Dunal is one of the most valuable medicinal plants synthesizing a large number of pharmacologically active secondary metabolites known as withanolides, the C28-steroidal lactones derived from triterpenoids. Though the plant has been well characterized in terms of phytochemical profiles as well as pharmaceutical activities, not much is known about the biosynthetic pathway and genes responsible for biosynthesis of these compounds. In this study, we have characterized the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR; EC 1.1.1.34) catalyzing the key regulatory step of the isoprenoid biosynthesis. The 1,728-bp full-length cDNA of Withania HMGR (WsHMGR) encodes a polypeptide of 575 amino acids. The amino acid sequence homology and phylogenetic analysis suggest that WsHMGR has typical structural features of other known plant HMGRs. The relative expression analysis suggests that WsHMGR expression varies in different tissues as well as chemotypes and is significantly elevated in response to exposure to salicylic acid, methyl jasmonate, and mechanical injury. The functional color assay in Escherichia coli showed that WsHMGR could accelerate the biosynthesis of carotenoids, establishing that WsHMGR encoded a functional protein and may play a catalytic role by its positive influence in isoprenoid biosynthesis.


Assuntos
Hidroximetilglutaril-CoA Redutases/metabolismo , Plantas Medicinais/enzimologia , Withania/enzimologia , Hidroximetilglutaril-CoA Redutases/genética , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Withania/genética , Withania/metabolismo
6.
Phytochem Anal ; 19(2): 104-15, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17721867

RESUMO

Rose-scented geranium (Pelargonium sp.) is a valuable monoterpene-yielding plant. It has been well characterised phytochemically through the isolation of >270 secondary metabolites, however, there is hardly any biochemical or metabolic information concerning this plant. Initial attempts to investigate its metabolism failed to produce any enzyme activity in the tissue extracts prepared in routine extraction buffers owing to the intrinsic properties of the tissue matrix. It was recognised that cellular hyper-acidity (cell sap pH approximately 3.0) gave rise to very low protein levels in the extracts, thus prohibiting detection of activities of even primary metabolic enzymes that are usually abundantly present in plants. Tissue extraction in Tris solution without pH adjustment (as used for studies involving citrus and banana) led to little or no improvement. Therefore, a novel approach using sodium carbonate solution as an efficient extraction system for enzymes and proteins from the plant was studied. Functionality of the carbonate extraction has been demonstrated through its effectiveness, a several-fold superior performance, in yielding protein, monitoring primary metabolism and secondary metabolic enzymes, and isozymic and polypeptide profiling. The process may also be helpful in the reliable analysis of other acidic plant tissues.


Assuntos
Carbonatos/química , Perfilação da Expressão Gênica , Pelargonium/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Antioxidantes/metabolismo , Metabolismo dos Carboidratos , Regulação da Expressão Gênica de Plantas , Isoenzimas , Pelargonium/enzimologia , Pelargonium/genética , Proteínas de Plantas/genética , Terpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA