Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Trends Cell Biol ; 34(4): 288-298, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37648594

RESUMO

The retinoblastoma protein (RB)-mediated regulation of E2F is a component of a highly conserved cell cycle machine. However, RB's tumor suppressor activity, like RB's requirement in animal development, is tissue-specific, context-specific, and sometimes appears uncoupled from cell proliferation. Detailed new information about RB's genomic distribution provides a new perspective on the complexity of RB function, suggesting that some of its functional specificity results from context-specific RB association with chromatin. Here we summarize recent evidence showing that RB targets different types of chromatin regulatory elements at different cell cycle stages. RB controls traditional RB/E2F targets prior to S-phase, but, when cells proliferate, RB redistributes to cell type-specific chromatin loci. We discuss the broad implications of the new data for RB research.


Assuntos
Cromatina , Proteína do Retinoblastoma , Animais , Fatores de Transcrição E2F/metabolismo , Ciclo Celular/genética , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Divisão Celular
2.
Cancer Discov ; 14(2): 227-239, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37916958

RESUMO

PIK3CA mutations occur in ∼8% of cancers, including ∼40% of HR-positive breast cancers, where the PI3K-alpha (PI3Kα)-selective inhibitor alpelisib is FDA approved in combination with fulvestrant. Although prior studies have identified resistance mechanisms, such as PTEN loss, clinically acquired resistance to PI3Kα inhibitors remains poorly understood. Through serial liquid biopsies and rapid autopsies in 39 patients with advanced breast cancer developing acquired resistance to PI3Kα inhibitors, we observe that 50% of patients acquire genomic alterations within the PI3K pathway, including PTEN loss and activating AKT1 mutations. Notably, although secondary PIK3CA mutations were previously reported to increase sensitivity to PI3Kα inhibitors, we identified emergent secondary resistance mutations in PIK3CA that alter the inhibitor binding pocket. Some mutations had differential effects on PI3Kα-selective versus pan-PI3K inhibitors, but resistance induced by all mutations could be overcome by the novel allosteric pan-mutant-selective PI3Kα-inhibitor RLY-2608. Together, these findings provide insights to guide strategies to overcome resistance in PIK3CA-mutated cancers. SIGNIFICANCE: In one of the largest patient cohorts analyzed to date, this study defines the clinical landscape of acquired resistance to PI3Kα inhibitors. Genomic alterations within the PI3K pathway represent a major mode of resistance and identify a novel class of secondary PIK3CA resistance mutations that can be overcome by an allosteric PI3Kα inhibitor. See related commentary by Gong and Vanhaesebroeck, p. 204 . See related article by Varkaris et al., p. 240 . This article is featured in Selected Articles from This Issue, p. 201.


Assuntos
Neoplasias da Mama , Fosfatidilinositol 3-Quinases , Humanos , Feminino , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fulvestranto , Inibidores de Fosfoinositídeo-3 Quinase , Classe I de Fosfatidilinositol 3-Quinases/genética , Mutação
3.
Cell Cycle ; 22(11): 1357-1366, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37139582

RESUMO

The retinoblastoma tumor suppressor (RB) prevents G1 to S cell cycle transition by inhibiting E2F activity. This function requires that RB remains un- or underphosphorylated (the so-called active forms of RB). Recently, we showed that active forms of RB cause widespread changes in nuclear architecture that are visible under a microscope. These phenotypes did not correlate with cell cycle arrest or repression of the E2F transcriptional program, but appeared later, and were associated with the appearance of autophagy or in IMR-90 cells with senescence markers. In this perspective, we describe the relative timing of these RB-induced events and discuss the mechanisms that may underlie RB-induced chromatin dispersion. We consider the relationship between RB-induced dispersion, autophagy, and senescence and the potential connection between dispersion and cell cycle exit.


Assuntos
Proteína do Retinoblastoma , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Fatores de Transcrição E2F/metabolismo , Ciclo Celular/genética , Divisão Celular , Proteínas de Ciclo Celular/metabolismo
4.
Mol Cell ; 82(18): 3333-3349.e9, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35981542

RESUMO

The interaction of RB with chromatin is key to understanding its molecular functions. Here, for first time, we identify the full spectrum of chromatin-bound RB. Rather than exclusively binding promoters, as is often described, RB targets three fundamentally different types of loci (promoters, enhancers, and insulators), which are largely distinguishable by the mutually exclusive presence of E2F1, c-Jun, and CTCF. While E2F/DP facilitates RB association with promoters, AP-1 recruits RB to enhancers. Although phosphorylation in CDK sites is often portrayed as releasing RB from chromatin, we show that the cell cycle redistributes RB so that it enriches at promoters in G1 and at non-promoter sites in cycling cells. RB-bound promoters include the classic E2F-targets and are similar between lineages, but RB-bound enhancers associate with different categories of genes and vary between cell types. Thus, RB has a well-preserved role controlling E2F in G1, and it targets cell-type-specific enhancers and CTCF sites when cells enter S-phase.


Assuntos
Cromatina , Proteína do Retinoblastoma , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Regiões Promotoras Genéticas , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Fator de Transcrição AP-1/genética
5.
Trends Cancer ; 8(9): 711-725, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35599231

RESUMO

The mammalian cell cycle has been extensively studied regarding cancer etiology, progression, and therapeutic intervention. The canonical cell cycle framework is supported by a plethora of data pointing to a relatively simple linear pathway in which mitogenic signals are integrated in a stepwise fashion to allow progression through G1/S with coordinate actions of cyclin-dependent kinases (CDK)4/6 and CDK2 on the RB tumor suppressor. Recent work on adaptive mechanisms and intrinsic heterogeneous dependencies indicates that G1/S control of the cell cycle is a variable signaling pathway rather than an invariant engine that drives cell division. These alterations can limit the effectiveness of pharmaceutical agents but provide new avenues for therapeutic interventions. These findings support a dystopian view of the cell cycle in cancer where the canonical utopian cell cycle is often not observed. However, recognizing the extent of cell cycle heterogeneity likely creates new opportunities for precision therapeutic approaches specifically targeting these states.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Neoplasias , Animais , Ciclo Celular/genética , Divisão Celular , Inibidor de Quinase Dependente de Ciclina p27 , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Humanos , Mamíferos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias/genética , Neoplasias/terapia , Proteínas Serina-Treonina Quinases , Células Tumorais Cultivadas
6.
J Cell Biol ; 221(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35019938

RESUMO

RB restricts G1/S progression by inhibiting E2F. Here, we show that sustained expression of active RB, and prolonged G1 arrest, causes visible changes in chromosome architecture that are not directly associated with E2F inhibition. Using FISH probes against two euchromatin RB-associated regions, two heterochromatin domains that lack RB-bound loci, and two whole-chromosome probes, we found that constitutively active RB (ΔCDK-RB) promoted a more diffuse, dispersed, and scattered chromatin organization. These changes were RB dependent, were driven by specific isoforms of monophosphorylated RB, and required known RB-associated activities. ΔCDK-RB altered physical interactions between RB-bound genomic loci, but the RB-induced changes in chromosome architecture were unaffected by dominant-negative DP1. The RB-induced changes appeared to be widespread and influenced chromosome localization within nuclei. Gene expression profiles revealed that the dispersion phenotype was associated with an increased autophagy response. We infer that, after cell cycle arrest, RB acts through noncanonical mechanisms to significantly change nuclear organization, and this reorganization correlates with transitions in cellular state.


Assuntos
Núcleo Celular/metabolismo , Proteína do Retinoblastoma/metabolismo , Autofagia , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Cromatina/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Histona Desacetilases/metabolismo , Humanos , Mutação/genética , Fenótipo , Ligação Proteica , Proteína do Retinoblastoma/genética
7.
J Natl Compr Canc Netw ; : 1-8, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33761455

RESUMO

BACKGROUND: Inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6i) are widely used as first-line therapy for hormone receptor-positive metastatic breast cancer (HR+ MBC). Although abemaciclib monotherapy is also FDA-approved for treatment of disease progression on endocrine therapy, there is limited insight into the clinical activity of abemaciclib after progression on prior CDK4/6i. PATIENTS AND METHODS: We identified patients with HR+ MBC from 6 cancer centers in the United States who received abemaciclib after disease progression on prior CDK4/6i, and abstracted clinical features, outcomes, toxicity, and predictive biomarkers. RESULTS: In the multicenter cohort, abemaciclib was well tolerated after a prior course of CDK4/6i (palbociclib)-based therapy; a minority of patients discontinued abemaciclib because of toxicity without progression (9.2%). After progression on palbociclib, most patients (71.3%) received nonsequential therapy with abemaciclib (with ≥1 intervening non-CDK4/6i regimens), with most receiving abemaciclib with an antiestrogen agent (fulvestrant, 47.1%; aromatase inhibitor, 27.6%), and the remainder receiving abemaciclib monotherapy (19.5%). Median progression-free survival for abemaciclib in this population was 5.3 months and median overall survival was 17.2 months, notably similar to results obtained in the MONARCH-1 study of abemaciclib monotherapy in heavily pretreated HR+/HER2-negative CDK4/6i-naïve patients. A total of 36.8% of patients received abemaciclib for ≥6 months. There was no relationship between the duration of clinical benefit while on palbociclib and the subsequent duration of treatment with abemaciclib. RB1, ERBB2, and CCNE1 alterations were noted among patients with rapid progression on abemaciclib. CONCLUSIONS: A subset of patients with HR+ MBC continue to derive clinical benefit from abemaciclib after progression on prior palbociclib. These results highlight the need for future studies to confirm molecular predictors of cross-resistance to CDK4/6i therapy and to better characterize the utility of abemaciclib after disease progression on prior CDK4/6i.

8.
Proc Natl Acad Sci U S A ; 117(46): 28806-28815, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139577

RESUMO

Akt activation up-regulates the intracellular levels of reactive oxygen species (ROS) by inhibiting ROS scavenging. Of the Akt isoforms, Akt3 has also been shown to up-regulate ROS by promoting mitochondrial biogenesis. Here, we employ a set of isogenic cell lines that express different Akt isoforms, to show that the most robust inducer of ROS is Akt3. As a result, Akt3-expressing cells activate the DNA damage response pathway, express high levels of p53 and its direct transcriptional target miR-34, and exhibit a proliferation defect, which is rescued by the antioxidant N-acetylcysteine. The importance of the DNA damage response in the inhibition of cell proliferation by Akt3 was confirmed by Akt3 overexpression in p53-/- and INK4a-/-/Arf-/- mouse embryonic fibroblasts (MEFs), which failed to inhibit cell proliferation, despite the induction of high levels of ROS. The induction of ROS by Akt3 is due to the phosphorylation of the NADPH oxidase subunit p47phox, which results in NADPH oxidase activation. Expression of Akt3 in p47phox-/- MEFs failed to induce ROS and to inhibit cell proliferation. Notably, the proliferation defect was rescued by wild-type p47phox, but not by the phosphorylation site mutant of p47phox In agreement with these observations, Akt3 up-regulates p53 in human cancer cell lines, and the expression of Akt3 positively correlates with the levels of p53 in a variety of human tumors. More important, Akt3 alterations correlate with a higher frequency of mutation of p53, suggesting that tumor cells may adapt to high levels of Akt3, by inactivating the DNA damage response.


Assuntos
Dano ao DNA , NADPH Oxidases/metabolismo , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Ativação Enzimática , Camundongos , NADPH Oxidases/genética , Oxirredução , Estresse Oxidativo/genética , Fosfoproteínas/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
9.
Cancer Discov ; 10(1): 72-85, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31594766

RESUMO

The combination of CDK4/6 inhibitors with antiestrogen therapies significantly improves clinical outcomes in ER-positive advanced breast cancer. To identify mechanisms of acquired resistance, we analyzed serial biopsies and rapid autopsies from patients treated with the combination of the CDK4/6 inhibitor ribociclib with letrozole. This study revealed that some resistant tumors acquired RB loss, whereas other tumors lost PTEN expression at the time of progression. In breast cancer cells, ablation of PTEN, through increased AKT activation, was sufficient to promote resistance to CDK4/6 inhibition in vitro and in vivo. Mechanistically, PTEN loss resulted in exclusion of p27 from the nucleus, leading to increased activation of both CDK4 and CDK2. Because PTEN loss also causes resistance to PI3Kα inhibitors, currently approved in the post-CDK4/6 setting, these findings provide critical insight into how this single genetic event may cause clinical cross-resistance to multiple targeted therapies in the same patient, with implications for optimal treatment-sequencing strategies. SIGNIFICANCE: Our analysis of serial biopsies uncovered RB and PTEN loss as mechanisms of acquired resistance to CDK4/6 inhibitors, utilized as first-line treatment for ER-positive advanced breast cancer. Importantly, these findings have near-term clinical relevance because PTEN loss also limits the efficacy of PI3Kα inhibitors currently approved in the post-CDK4/6 setting.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , PTEN Fosfo-Hidrolase/deficiência , Idoso , Aminopiridinas/administração & dosagem , Animais , Apoptose , Biomarcadores Tumorais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Proliferação de Células , Ensaios Clínicos Fase I como Assunto , Estudos Transversais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Letrozol/administração & dosagem , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase/genética , Prognóstico , Purinas/administração & dosagem , Receptores de Estrogênio/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Mol Cell ; 73(5): 985-1000.e6, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30711375

RESUMO

Hyper-phosphorylation of RB controls its interaction with E2F and inhibits its tumor suppressor properties. However, during G1 active RB can be mono-phosphorylated on any one of 14 CDK phosphorylation sites. Here, we used quantitative proteomics to profile protein complexes formed by each mono-phosphorylated RB isoform (mP-RB) and identified the associated transcriptional outputs. The results show that the 14 sites of mono-phosphorylation co-ordinate RB's interactions and confer functional specificity. All 14 mP-RBs interact with E2F/DP proteins, but they provide different shades of E2F regulation. RB mono-phosphorylation at S811, for example, alters RB transcriptional activity by promoting its association with NuRD complexes. The greatest functional differences between mP-RBs are evident beyond the cell cycle machinery. RB mono-phosphorylation at S811 or T826 stimulates the expression of oxidative phosphorylation genes, increasing cellular oxygen consumption. These results indicate that RB activation signals are integrated in a phosphorylation code that determines the diversity of RB activity.


Assuntos
Neoplasias da Mama/metabolismo , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Mutação , Fosforilação Oxidativa , Fosforilação , Ligação Proteica , Proteômica/métodos , Proteína do Retinoblastoma/genética , Transdução de Sinais/genética , Transcrição Gênica
11.
Mol Cell ; 64(6): 1015-1017, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984740

RESUMO

Repetitive DNA elements are essential for genome function; in this issue of Molecular Cell, Ishak et al. (2016) describe a novel mechanism of epigenetic repression at these elements that requires pRB-dependent recruitment of EZH2.


Assuntos
Sequências Repetitivas de Ácido Nucleico , Proteína do Retinoblastoma/genética , DNA , Genoma
12.
Genes Dev ; 29(17): 1875-89, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26314710

RESUMO

The retinoblastoma tumor suppressor (pRb) protein associates with chromatin and regulates gene expression. Numerous studies have identified Rb-dependent RNA signatures, but the proteomic effects of Rb loss are largely unexplored. We acutely ablated Rb in adult mice and conducted a quantitative analysis of RNA and proteomic changes in the colon and lungs, where Rb(KO) was sufficient or insufficient to induce ectopic proliferation, respectively. As expected, Rb(KO) caused similar increases in classic pRb/E2F-regulated transcripts in both tissues, but, unexpectedly, their protein products increased only in the colon, consistent with its increased proliferative index. Thus, these protein changes induced by Rb loss are coupled with proliferation but uncoupled from transcription. The proteomic changes in common between Rb(KO) tissues showed a striking decrease in proteins with mitochondrial functions. Accordingly, RB1 inactivation in human cells decreased both mitochondrial mass and oxidative phosphorylation (OXPHOS) function. RB(KO) cells showed decreased mitochondrial respiratory capacity and the accumulation of hypopolarized mitochondria. Additionally, RB/Rb loss altered mitochondrial pyruvate oxidation from (13)C-glucose through the TCA cycle in mouse tissues and cultured cells. Consequently, RB(KO) cells have an enhanced sensitivity to mitochondrial stress conditions. In summary, proteomic analyses provide a new perspective on Rb/RB1 mutation, highlighting the importance of pRb for mitochondrial function and suggesting vulnerabilities for treatment.


Assuntos
Mitocôndrias/metabolismo , Fosforilação Oxidativa , Proteína do Retinoblastoma/genética , Animais , Células Cultivadas , Colo/fisiopatologia , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Pulmão/fisiopatologia , Camundongos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteômica , Proteína do Retinoblastoma/metabolismo , Estresse Fisiológico/genética , Transcriptoma
13.
Cancer Res ; 74(14): 3935-46, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24853546

RESUMO

The JmjC domain histone H3K36me2/me1 demethylase NDY1/KDM2B is overexpressed in various types of cancer. Here we show that knocking down NDY1 in a set of 10 cell lines derived from a broad range of human tumors inhibited their anchorage-dependent and anchorage-independent growth by inducing senescence and/or apoptosis in some and by inhibiting G1 progression in all. We further show that the knockdown of NDY1 in mammary adenocarcinoma cell lines decreased the number, size, and replating efficiency of mammospheres and downregulated the stem cell markers ALDH and CD44, while upregulating CD24. Together, these findings suggest that NDY1 is required for the self-renewal of cancer stem cells and are in agreement with additional findings showing that tumor cells in which NDY1 was knocked down undergo differentiation and a higher number of them is required to induce mammary adenocarcinomas, upon orthotopic injection in animals. Mechanistically, NDY1 functions as a master regulator of a set of miRNAs that target several members of the polycomb complexes PRC1 and PRC2, and its knockdown results in the de-repression of these miRNAs and the downregulation of their polycomb targets. Consistent with these observations, NDY1/KDM2B is expressed at higher levels in basal-like triple-negative breast cancers, and its overexpression is associated with higher rates of relapse after treatment. In addition, NDY1-regulated miRNAs are downregulated in both normal and cancer mammary stem cells. Finally, in primary human breast cancer, NDY1/KDM2B expression correlates negatively with the expression of the NDY1-regulated miRNAs and positively with the expression of their PRC targets.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas F-Box/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste , Proteínas F-Box/genética , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Imunofenotipagem , Histona Desmetilases com o Domínio Jumonji/genética , Fenótipo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Proteínas do Grupo Polycomb/química , Subunidades Proteicas/metabolismo , Interferência de RNA
14.
Mol Cell ; 53(4): 577-90, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24462114

RESUMO

The three Akt isoforms are functionally distinct. Here we show that their phosphoproteomes also differ, suggesting that their functional differences are due to differences in target specificity. One of the top cellular functions differentially regulated by Akt isoforms is RNA processing. IWS1, an RNA processing regulator, is phosphorylated by Akt3 and Akt1 at Ser720/Thr721. The latter is required for the recruitment of SETD2 to the RNA Pol II complex. SETD2 trimethylates histone H3 at K36 during transcription, creating a docking site for MRG15 and PTB. H3K36me3-bound MRG15 and PTB regulate FGFR-2 splicing, which controls tumor growth and invasiveness downstream of IWS1 phosphorylation. Twenty-one of the twenty-four non-small-cell-lung carcinomas we analyzed express IWS1. More importantly, the stoichiometry of IWS1 phosphorylation in these tumors correlates with the FGFR-2 splicing pattern and with Akt phosphorylation and Akt3 expression. These data identify an Akt isoform-dependent regulatory mechanism for RNA processing and demonstrate its role in lung cancer.


Assuntos
Processamento Alternativo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sequência de Aminoácidos , Animais , Regulação da Expressão Gênica , Células HeLa , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Transplante de Neoplasias , Fosfoproteínas/metabolismo , Fosforilação , Isoformas de Proteínas/metabolismo , Proteômica , RNA/metabolismo , Proteínas de Ligação a RNA , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Fatores de Transcrição
15.
Proc Natl Acad Sci U S A ; 109(10): E613-21, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22315412

RESUMO

The protein kinases Akt1, Akt2, and Akt3 possess nonredundant signaling properties, few of which have been investigated. Here, we present evidence for an Akt1-dependent pathway that controls interferon (IFN)-regulated gene expression and antiviral immunity. The target of this pathway is EMSY, an oncogenic interacting partner of BRCA2 that functions as a transcriptional repressor. Overexpression of EMSY in hTERT-immortalized mammary epithelial cells, and in breast and ovarian carcinoma cell lines, represses IFN-stimulated genes (ISGs) in a BRCA2-dependent manner, whereas its knockdown has the opposite effect. EMSY binds to the promoters of ISGs, suggesting that EMSY functions as a direct transcriptional repressor. Akt1, but not Akt2, phosphorylates EMSY at Ser209, relieving EMSY-mediated ISG repression. The Akt1/EMSY/ISG pathway is activated by both viral infection and IFN, and it inhibits the replication of HSV-1 and vesicular stomatitis virus (VSV). Collectively, these data define an Akt1-dependent pathway that contributes to the full activation of ISGs by relieving their repression by EMSY and BRCA2.


Assuntos
Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Repressoras/metabolismo , Células 3T3 , Animais , Proteína BRCA2/metabolismo , Linhagem Celular Tumoral , Humanos , Interferons/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Proteínas/metabolismo , Transcrição Gênica
16.
Mol Cell ; 43(2): 285-98, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21777817

RESUMO

The histone H3K27 methyltransferase EZH2 plays an important role in oncogenesis, by mechanisms that are incompletely understood. Here, we show that the JmjC domain histone H3 demethylase NDY1 synergizes with EZH2 to silence the EZH2 inhibitor miR-101. NDY1 and EZH2 repress miR-101 by binding its promoter in concert, via a process triggered by upregulation of NDY1. Whereas EZH2 binding depends on NDY1, the latter binds independently of EZH2. However, both are required to repress transcription. NDY1 and EZH2 acting in concert upregulate EZH2 and stabilize the repression of miR-101 and its outcome. NDY1 is induced by FGF-2 via CREB phosphorylation and activation, downstream of DYRK1A, and mediates the FGF-2 and EZH2 effects on cell proliferation, migration, and angiogenesis. The FGF-2-NDY1/EZH2-miR-101-EZH2 axis described here was found to be active in bladder cancer. These data delineate an oncogenic pathway that functionally links FGF-2 with EZH2 via NDY1 and miR-101.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , MicroRNAs/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/farmacologia , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos , MicroRNAs/metabolismo , Neovascularização Fisiológica , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Complexo Repressor Polycomb 2 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
J Inorg Biochem ; 104(4): 423-30, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20060169

RESUMO

The synthesis and study of trimethyl-, tributyl- and triphenyltin esters of the 3- and 4-aminobenzoic acids are reported. The triorganotin derivatives are characterized by elemental analyses, FT-IR and solution (1)H and (13)C NMR spectra. The structure of the trimethyltin 4-aminobenzoate is solved by X-ray diffraction and proves to be polymeric in nature with bridging carboxylates and trigonal bipyramidal tin(IV) environment. However, all the compounds become monomeric in solution with a tetrahedral tin coordination environment in chloroform and trigonal bipyramidal in DMSO due to coordination of the solvent as the NMR spectra have revealed. The compounds exhibit variable cytotoxic activity when tested against Kappa562 myelogenous leukaemia, HeLa cervical cancer and HepG2 hepatocellular carcinoma cell lines, with the butyl derivatives being the more effective and the methyl ones the less. Interestingly, their antibacterial action was significantly lower when tested against Escherichia coli, while not appreciable direct interaction with DNA has been observed. The above observations account for a mode of action that may be related to their potential interaction with cell membranes and the subsequent inhibition of various signaling processes.


Assuntos
Aminobenzoatos/química , Ésteres/química , Compostos Orgânicos de Estanho/química , Aminobenzoatos/síntese química , Aminobenzoatos/farmacologia , Animais , Linhagem Celular Tumoral/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres/síntese química , Ésteres/farmacologia , Humanos , Estrutura Molecular , Compostos Orgânicos de Estanho/síntese química , Compostos Orgânicos de Estanho/farmacologia , Difração de Raios X
18.
BMC Biochem ; 10: 10, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19358706

RESUMO

BACKGROUND: The assembly of nucleosomes to higher-order chromatin structures is finely tuned by the relative affinities of histones for chaperones and nucleosomal binding sites. The myeloid leukaemia protein SET/TAF-Ibeta belongs to the NAP1 family of histone chaperones and participates in several chromatin-based mechanisms, such as chromatin assembly, nucleosome reorganisation and transcriptional activation. To better understand the histone chaperone function of SET/TAF-Ibeta, we designed several SET/TAF-Ibeta truncations, examined their structural integrity by circular Dichroism and assessed qualitatively and quantitatively the histone binding properties of wild-type protein and mutant forms using GST-pull down experiments and fluorescence spectroscopy-based binding assays. RESULTS: Wild type SET/TAF-Ibeta binds to histones H2B and H3 with Kd values of 2.87 and 0.15 microM, respectively. The preferential binding of SET/TAF-Ibeta to histone H3 is mediated by its central region and the globular part of H3. On the contrary, the acidic C-terminal tail and the amino-terminal dimerisation domain of SET/TAF-Ibeta, as well as the H3 amino-terminal tail, are dispensable for this interaction. CONCLUSION: This type of analysis allowed us to assess the relative affinities of SET/TAF-Ibeta for different histones and identify the domains of the protein required for effective histone recognition. Our findings are consistent with recent structural studies of SET/TAF-Ibeta and can be valuable to understand the role of SET/TAF-Ibeta in chromatin function.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/química , Dicroísmo Circular , Proteínas de Ligação a DNA , Chaperonas de Histonas , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Fatores de Transcrição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA