Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Orphanet J Rare Dis ; 18(1): 301, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749605

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most aggressive and common malignant primary brain tumor; however, treatment remains a significant challenge. This study aims to identify drug repurposing or repositioning candidates for GBM by developing an integrative rare disease profile network containing heterogeneous types of biomedical data. METHODS: We developed a Glioblastoma-based Biomedical Profile Network (GBPN) by extracting and integrating biomedical information pertinent to GBM-related diseases from the NCATS GARD Knowledge Graph (NGKG). We further clustered the GBPN based on modularity classes which resulted in multiple focused subgraphs, named mc_GBPN. We then identified high-influence nodes by performing network analysis over the mc_GBPN and validated those nodes that could be potential drug repurposing or repositioning candidates for GBM. RESULTS: We developed the GBPN with 1,466 nodes and 107,423 edges and consequently the mc_GBPN with forty-one modularity classes. A list of the ten most influential nodes were identified from the mc_GBPN. These notably include Riluzole, stem cell therapy, cannabidiol, and VK-0214, with proven evidence for treating GBM. CONCLUSION: Our GBM-targeted network analysis allowed us to effectively identify potential candidates for drug repurposing or repositioning. Further validation will be conducted by using other different types of biomedical and clinical data and biological experiments. The findings could lead to less invasive treatments for glioblastoma while significantly reducing research costs by shortening the drug development timeline. Furthermore, this workflow can be extended to other disease areas.


Assuntos
Canabidiol , Glioblastoma , Humanos , Reposicionamento de Medicamentos , Glioblastoma/tratamento farmacológico , Doenças Raras , Desenvolvimento de Medicamentos
2.
Res Sq ; 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37131675

RESUMO

Background Glioblastoma (GBM) is the most aggressive and common malignant primary brain tumor; however, treatment remains a significant challenge. This study aims to identify drug repurposing candidates for GBM by developing an integrative rare disease profile network containing heterogeneous types of biomedical data. Methods We developed a Glioblastoma-based Biomedical Profile Network (GBPN) by extracting and integrating biomedical information pertinent to GBM-related diseases from the NCATS GARD Knowledge Graph (NGKG). We further clustered the GBPN based on modularity classes which resulted in multiple focused subgraphs, named mc_GBPN. We then identified high-influence nodes by performing network analysis over the mc_GBPN and validated those nodes that could be potential drug repositioning candidates for GBM. Results We developed the GBPN with 1,466 nodes and 107,423 edges and consequently the mc_GBPN with forty-one modularity classes. A list of the ten most influential nodes were identified from the mc_GBPN. These notably include Riluzole, stem cell therapy, cannabidiol, and VK-0214, with proven evidence for treating GBM. Conclusion Our GBM-targeted network analysis allowed us to effectively identify potential candidates for drug repurposing. This could lead to less invasive treatments for glioblastoma while significantly reducing research costs by shortening the drug development timeline. Furthermore, this workflow can be extended to other disease areas.

3.
J Transl Med ; 19(1): 336, 2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34364390

RESUMO

BACKGROUND: Radiation therapy is integral to effective thoracic cancer treatments, but its application is limited by sensitivity of critical organs such as the heart. The impacts of acute radiation-induced damage and its chronic effects on normal heart cells are highly relevant in radiotherapy with increasing lifespans of patients. Biomarkers for normal tissue damage after radiation exposure, whether accidental or therapeutic, are being studied as indicators of both acute and delayed effects. Recent research has highlighted the potential importance of RNAs, including messenger RNAs (mRNAs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) as biomarkers to assess radiation damage. Understanding changes in mRNA and non-coding RNA expression will elucidate biological pathway changes after radiation. METHODS: To identify significant expression changes in mRNAs, lncRNAs, and miRNAs, we performed whole transcriptome microarray analysis of mouse heart tissue at 48 h after whole-body irradiation with 1, 2, 4, 8, and 12 Gray (Gy). We also validated changes in specific lncRNAs through RT-qPCR. Ingenuity Pathway Analysis (IPA) was used to identify pathways associated with gene expression changes. RESULTS: We observed sustained increases in lncRNAs and mRNAs, across all doses of radiation. Alas2, Aplnr, and Cxc3r1 were the most significantly downregulated mRNAs across all doses. Among the significantly upregulated mRNAs were cell-cycle arrest biomarkers Gdf15, Cdkn1a, and Ckap2. Additionally, IPA identified significant changes in gene expression relevant to senescence, apoptosis, hemoglobin synthesis, inflammation, and metabolism. LncRNAs Abhd11os, Pvt1, Trp53cor1, and Dino showed increased expression with increasing doses of radiation. We did not observe any miRNAs with sustained up- or downregulation across all doses, but miR-149-3p, miR-6538, miR-8101, miR-7118-5p, miR-211-3p, and miR-3960 were significantly upregulated after 12 Gy. CONCLUSIONS: Radiation-induced RNA expression changes may be predictive of normal tissue toxicities and may indicate targetable pathways for radiation countermeasure development and improved radiotherapy treatment plans.


Assuntos
MicroRNAs , RNA Longo não Codificante , 5-Aminolevulinato Sintetase , Animais , Redes Reguladoras de Genes , Humanos , Camundongos , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Irradiação Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA