Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(3): 2054-2061, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38194293

RESUMO

Natural proteins are highly optimized for function but are often difficult to produce at a scale suitable for biotechnological applications due to poor expression in heterologous systems, limited solubility, and sensitivity to temperature. Thus, a general method that improves the physical properties of native proteins while maintaining function could have wide utility for protein-based technologies. Here, we show that the deep neural network ProteinMPNN, together with evolutionary and structural information, provides a route to increasing protein expression, stability, and function. For both myoglobin and tobacco etch virus (TEV) protease, we generated designs with improved expression, elevated melting temperatures, and improved function. For TEV protease, we identified multiple designs with improved catalytic activity as compared to the parent sequence and previously reported TEV variants. Our approach should be broadly useful for improving the expression, stability, and function of biotechnologically important proteins.


Assuntos
Endopeptidases , Temperatura , Endopeptidases/metabolismo , Proteínas Recombinantes de Fusão
2.
Sci Adv ; 10(5): eadg7887, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38295166

RESUMO

Protein tyrosine phosphatases (PTPs) play major roles in cancer and are emerging as therapeutic targets. Recent reports suggest low-molecular weight PTP (LMPTP)-encoded by the ACP1 gene-is overexpressed in prostate tumors. We found ACP1 up-regulated in human prostate tumors and ACP1 expression inversely correlated with overall survival. Using CRISPR-Cas9-generated LMPTP knockout C4-2B and MyC-CaP cells, we identified LMPTP as a critical promoter of prostate cancer (PCa) growth and bone metastasis. Through metabolomics, we found that LMPTP promotes PCa cell glutathione synthesis by dephosphorylating glutathione synthetase on inhibitory Tyr270. PCa cells lacking LMPTP showed reduced glutathione, enhanced activation of eukaryotic initiation factor 2-mediated stress response, and enhanced reactive oxygen species after exposure to taxane drugs. LMPTP inhibition slowed primary and bone metastatic prostate tumor growth in mice. These findings reveal a role for LMPTP as a critical promoter of PCa growth and metastasis and validate LMPTP inhibition as a therapeutic strategy for treating PCa through sensitization to oxidative stress.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Camundongos , Animais , Peso Molecular , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Tirosina , Proteínas Tirosina Fosfatases/metabolismo
3.
Nat Struct Mol Biol ; 30(1): 72-80, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36593311

RESUMO

Cyclic GMP-AMP synthase (cGAS) is a pattern recognition receptor critical for the innate immune response to intracellular pathogens, DNA damage, tumorigenesis and senescence. Binding to double-stranded DNA (dsDNA) induces conformational changes in cGAS that activate the enzyme to produce 2'-3' cyclic GMP-AMP (cGAMP), a second messenger that initiates a potent interferon (IFN) response through its receptor, STING. Here, we combined two-state computational design with informatics-guided design to create constitutively active, dsDNA ligand-independent cGAS (CA-cGAS). We identified CA-cGAS mutants with IFN-stimulating activity approaching that of dsDNA-stimulated wild-type cGAS. DNA-independent adoption of the active conformation was directly confirmed by X-ray crystallography. In vivo expression of CA-cGAS in tumor cells resulted in STING-dependent tumor regression, demonstrating that the designed proteins have therapeutically relevant biological activity. Our work provides a general framework for stabilizing active conformations of enzymes and provides CA-cGAS variants that could be useful as genetically encoded adjuvants and tools for understanding inflammatory diseases.


Assuntos
Imunidade Inata , Nucleotidiltransferases , Nucleotidiltransferases/metabolismo , DNA/química
4.
Eur J Med Chem ; 240: 114570, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35779291

RESUMO

As an essential enzyme of SARS-CoV-2, the COVID-19 pathogen, main protease (MPro) is a viable target to develop antivirals for the treatment of COVID-19. By varying chemical compositions at both P2 and P3 positions and the N-terminal protection group, we synthesized 18 tripeptidyl MPro inhibitors that contained also an aldehyde warhead and ß-(S-2-oxopyrrolidin-3-yl)-alaninal at the P1 position. Systematic characterizations of these inhibitors were conducted, including their in vitro enzymatic inhibition potency, X-ray crystal structures of their complexes with MPro, their inhibition of MPro transiently expressed in 293T cells, and cellular toxicity and SARS-CoV-2 antiviral potency of selected inhibitors. These inhibitors have a large variation of determined in vitro enzymatic inhibition IC50 values that range from 4.8 to 650 nM. The determined in vitro enzymatic inhibition IC50 values reveal that relatively small side chains at both P2 and P3 positions are favorable for achieving high in vitro MPro inhibition potency, the P3 position is tolerable toward unnatural amino acids with two alkyl substituents on the α-carbon, and the inhibition potency is sensitive toward the N-terminal protection group. X-ray crystal structures of MPro bound with 16 inhibitors were determined. In all structures, the MPro active site cysteine interacts covalently with the aldehyde warhead of the bound inhibitor to form a hemithioacetal that takes an S configuration. For all inhibitors, election density around the N-terminal protection group is weak indicating possible flexible binding of this group to MPro. In MPro, large structural variations were observed on residues N142 and Q189. Unlike their high in vitro enzymatic inhibition potency, most inhibitors showed low potency to inhibit MPro that was transiently expressed in 293T cells. Inhibitors that showed high potency to inhibit MPro transiently expressed in 293T cells all contain O-tert-butyl-threonine at the P3 position. These inhibitors also exhibited relatively low cytotoxicity and high antiviral potency. Overall, our current and previous studies indicate that O-tert-butyl-threonine at the P3 site is a key component to achieve high cellular and antiviral potency for tripeptidyl aldehyde inhibitors of MPro.


Assuntos
COVID-19 , SARS-CoV-2 , Aldeídos/farmacologia , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Humanos , Inibidores de Proteases/química , Treonina
5.
Eur J Med Chem ; 240: 114596, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35839690

RESUMO

Boceprevir is an HCV NSP3 inhibitor that was explored as a repurposed drug for COVID-19. It inhibits the SARS-CoV-2 main protease (MPro) and contains an α-ketoamide warhead, a P1 ß-cyclobutylalanyl moiety, a P2 dimethylcyclopropylproline, a P3 tert-butylglycine, and a P4 N-terminal tert-butylcarbamide. By introducing modifications at all four positions, we synthesized 20 boceprevir-based MPro inhibitors including PF-07321332 and characterized their MPro inhibition potency in test tubes (in vitro) and 293T cells (in cellulo). Crystal structures of MPro bound with 10 inhibitors and cytotoxicity and antiviral potency of 4 inhibitors were characterized as well. Replacing the P1 site with a ß-(S-2-oxopyrrolidin-3-yl)-alanyl (Opal) residue and the warhead with an aldehyde leads to high in vitro potency. The original moieties at P2, P3 and the P4 N-terminal cap positions in boceprevir are better than other tested chemical moieties for high in vitro potency. In crystal structures, all inhibitors form a covalent adduct with the MPro active site cysteine. The P1 Opal residue, P2 dimethylcyclopropylproline and P4 N-terminal tert-butylcarbamide make strong hydrophobic interactions with MPro, explaining high in vitro potency of inhibitors that contain these moieties. A unique observation was made with an inhibitor that contains a P4 N-terminal isovaleramide. In its MPro complex structure, the P4 N-terminal isovaleramide is tucked deep in a small pocket of MPro that originally recognizes a P4 alanine side chain in a substrate. Although all inhibitors show high in vitro potency, they have drastically different in cellulo potency to inhibit ectopically expressed MPro in human 293T cells. In general, inhibitors with a P4 N-terminal carbamide or amide have low in cellulo potency. This trend is reversed when the P4 N-terminal cap is changed to a carbamate. The installation of a P3 O-tert-butyl-threonine improves in cellulo potency. Three molecules that contain a P4 N-terminal carbamate were advanced to cytotoxicity tests on 293T cells and antiviral potency tests on three SARS-CoV-2 variants. They all have relatively low cytotoxicity and high antiviral potency with EC50 values around 1 µM. A control compound with a nitrile warhead and a P4 N-terminal amide has undetectable antiviral potency. Based on all observations, we conclude that a P4 N-terminal carbamate in a boceprevir derivative is key for high antiviral potency against SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , Carbutamida , Antivirais/química , Antivirais/farmacologia , Carbamatos , Humanos , Lactamas , Leucina , Nitrilas , Prolina/análogos & derivados , Inibidores de Proteases/química , SARS-CoV-2
6.
J Biol Chem ; 298(3): 101654, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35101440

RESUMO

Matrix metalloproteinases (MMPs) have long been known as key drivers in the development and progression of diseases, including cancer and neurodegenerative, cardiovascular, and many other inflammatory and degenerative diseases, making them attractive potential drug targets. Engineering selective inhibitors based upon tissue inhibitors of metalloproteinases (TIMPs), endogenous human proteins that tightly yet nonspecifically bind to the family of MMPs, represents a promising new avenue for therapeutic development. Here, we used a counter-selective screening strategy for directed evolution of yeast-displayed human TIMP-1 to obtain TIMP-1 variants highly selective for the inhibition of MMP-3 in preference over MMP-10. As MMP-3 and MMP-10 are the most similar MMPs in sequence, structure, and function, our results thus clearly demonstrate the capability for engineering full-length TIMP proteins to be highly selective MMP inhibitors. We show using protein crystal structures and models of MMP-3-selective TIMP-1 variants bound to MMP-3 and counter-target MMP-10 how structural alterations within the N-terminal and C-terminal TIMP-1 domains create new favorable and selective interactions with MMP-3 and disrupt unique interactions with MMP-10. While our MMP-3-selective inhibitors may be of interest for future investigation in diseases where this enzyme drives pathology, our platform and screening strategy can be employed for developing selective inhibitors of additional MMPs implicated as therapeutic targets in disease.


Assuntos
Metaloproteinase 3 da Matriz , Inibidor Tecidual de Metaloproteinase-1 , Humanos , Metaloproteinase 10 da Matriz/química , Metaloproteinase 10 da Matriz/genética , Metaloproteinase 10 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/química , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Engenharia de Proteínas , Inibidor Tecidual de Metaloproteinase-1/química , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo
7.
Mol Microbiol ; 116(2): 427-437, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33786926

RESUMO

The ant operon of the antimony-mining bacterium Comamonas testosterone JL40 confers resistance to Sb(III). The operon is transcriptionally regulated by the product of the first gene in the operon, antR. AntR is a member of ArsR/SmtB family of metal/metalloid-responsive repressors resistance. We purified and characterized C. testosterone AntR and demonstrated that it responds to metalloids in the order Sb(III) = methylarsenite (MAs(III) >> As(III)). The protein was crystallized, and the structure was solved at 2.1 Å resolution. The homodimeric structure of AntR adopts a classical ArsR/SmtB topology architecture. The protein has five cysteine residues, of which Cys103a from one monomer and Cys113b from the other monomer, are proposed to form one Sb(III) binding site, and Cys113a and Cys103b forming a second binding site. This is the first report of the structure and binding properties of a transcriptional repressor with high selectivity for environmental antimony.


Assuntos
Antimônio/farmacologia , Arsênio/farmacologia , Comamonas testosteroni/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas Repressoras/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Sequência de Aminoácidos , Arsenicais/farmacologia , Sítios de Ligação , Comamonas testosteroni/efeitos dos fármacos , Comamonas testosteroni/genética , Regulação Bacteriana da Expressão Gênica/genética , Conformação Proteica , Proteínas Repressoras/metabolismo , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/genética , Transcrição Gênica/genética
8.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33637650

RESUMO

Bromodomain testis (BRDT), a member of the bromodomain and extraterminal (BET) subfamily that includes the cancer targets BRD2, BRD3, and BRD4, is a validated contraceptive target. All BET subfamily members have two tandem bromodomains (BD1 and BD2). Knockout mice lacking BRDT-BD1 or both bromodomains are infertile. Treatment of mice with JQ1, a BET BD1/BD2 nonselective inhibitor with the highest affinity for BRD4, disrupts spermatogenesis and reduces sperm number and motility. To assess the contribution of each BRDT bromodomain, we screened our collection of DNA-encoded chemical libraries for BRDT-BD1 and BRDT-BD2 binders. High-enrichment hits were identified and resynthesized off-DNA and examined for their ability to compete with JQ1 in BRDT and BRD4 bromodomain AlphaScreen assays. These studies identified CDD-1102 as a selective BRDT-BD2 inhibitor with low nanomolar potency and >1,000-fold selectivity over BRDT-BD1. Structure-activity relationship studies of CDD-1102 produced a series of additional BRDT-BD2/BRD4-BD2 selective inhibitors, including CDD-1302, a truncated analog of CDD-1102 with similar activity, and CDD-1349, an analog with sixfold selectivity for BRDT-BD2 versus BRD4-BD2. BROMOscan bromodomain profiling confirmed the great affinity and selectivity of CDD-1102 and CDD-1302 on all BET BD2 versus BD1 with the highest affinity for BRDT-BD2. Cocrystals of BRDT-BD2 with CDD-1102 and CDD-1302 were determined at 2.27 and 1.90 Å resolution, respectively, and revealed BRDT-BD2 specific contacts that explain the high affinity and selectivity of these compounds. These BD2-specific compounds and their binding to BRDT-BD2 are unique compared with recent reports and enable further evaluation of their nonhormonal contraceptive potential in vitro and in vivo.


Assuntos
Azepinas/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Anticoncepcionais Masculinos/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Triazóis/farmacologia , Animais , Azepinas/química , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Clonagem Molecular , Anticoncepcionais Masculinos/química , Cristalografia por Raios X , Descoberta de Drogas , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Masculino , Camundongos , Simulação de Acoplamento Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Relação Quantitativa Estrutura-Atividade , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Testículo/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triazóis/química
9.
Sci Rep ; 11(1): 1121, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441849

RESUMO

Despite the established roles of the epigenetic factor UHRF1 in oncogenesis, no UHRF1-targeting therapeutics have been reported to date. In this study, we use fragment-based ligand discovery to identify novel scaffolds for targeting the isolated UHRF1 tandem Tudor domain (TTD), which recognizes the heterochromatin-associated histone mark H3K9me3 and supports intramolecular contacts with other regions of UHRF1. Using both binding-based and function-based screens of a ~ 2300-fragment library in parallel, we identified 2,4-lutidine as a hit for follow-up NMR and X-ray crystallography studies. Unlike previous reported ligands, 2,4-lutidine binds to two binding pockets that are in close proximity on TTD and so has the potential to be evolved into more potent inhibitors using a fragment-linking strategy. Our study provides a useful starting point for developing potent chemical probes against UHRF1.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/química , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Descoberta de Drogas , Piridinas/química , Piridinas/metabolismo , Bibliotecas de Moléculas Pequenas , Domínio Tudor , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Código das Histonas , Histonas/metabolismo , Ligantes , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Piridinas/farmacocinética , Relação Estrutura-Atividade
10.
bioRxiv ; 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34981047

RESUMO

As an essential enzyme to SARS-CoV-2, main protease (M Pro ) is a viable target to develop antivirals for the treatment of COVID-19. By varying chemical compositions at both P2 and P3 sites and the N -terminal protection group, we synthesized a series of M Pro inhibitors that contain ß -(S-2-oxopyrrolidin-3-yl)-alaninal at the P1 site. These inhibitors have a large variation of determined IC 50 values that range from 4.8 to 650 nM. The determined IC 50 values reveal that relatively small side chains at both P2 and P3 sites are favorable for achieving high in vitro M Pro inhibition potency, the P3 site is tolerable toward unnatural amino acids with two alkyl substituents on the α -carbon, and the inhibition potency is sensitive toward the N -terminal protection group. X-ray crystal structures of M Pro bound with 16 inhibitors were determined. All structures show similar binding patterns of inhibitors at the M Pro active site. A covalent interaction between the active site cysteine and a bound inhibitor was observed in all structures. In M Pro , large structural variations were observed on residues N142 and Q189. All inhibitors were also characterized on their inhibition of M Pro in 293T cells, which revealed their in cellulo potency that is drastically different from their in vitro enzyme inhibition potency. Inhibitors that showed high in cellulo potency all contain O - tert -butyl-threonine at the P3 site. Based on the current and a previous study, we conclude that O - tert -butyl-threonine at the P3 site is a key component to achieve high cellular and antiviral potency for peptidyl aldehyde inhibitors of M Pro . This finding will be critical to the development of novel antivirals to address the current global emergency of concerning the COVID-19 pandemic.

11.
bioRxiv ; 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34981058

RESUMO

Boceprevir is an HCV NSP3 inhibitor that has been explored as a repurposed drug for COVID-19. It inhibits the SARS-CoV-2 main protease (M Pro ) and contains an α-ketoamide warhead, a P1 ß-cyclobutylalanyl moiety, a P2 dimethylcyclopropylproline, a P3 tert -butyl-glycine, and a P4 N -terminal tert -butylcarbamide. By introducing modifications at all four positions, we synthesized 20 boceprevir-based M Pro inhibitors including PF-07321332 and characterized their M Pro inhibition potency in test tubes ( in vitro ) and human host cells ( in cellulo ). Crystal structures of M Pro bound with 10 inhibitors and antiviral potency of 4 inhibitors were characterized as well. Replacing the P1 site with a ß-(S-2-oxopyrrolidin-3-yl)-alanyl (opal) residue and the warhead with an aldehyde leads to high in vitro potency. The original moieties at P2, P3 and the P4 N -terminal cap positions in boceprevir are better than other tested chemical moieties for high in vitro potency. In crystal structures, all inhibitors form a covalent adduct with the M Pro active site cysteine. The P1 opal residue, P2 dimethylcyclopropylproline and P4 N -terminal tert -butylcarbamide make strong hydrophobic interactions with M Pro , explaining high in vitro potency of inhibitors that contain these moieties. A unique observation was made with an inhibitor that contains an P4 N -terminal isovaleramide. In its M Pro complex structure, the P4 N -terminal isovaleramide is tucked deep in a small pocket of M Pro that originally recognizes a P4 alanine side chain in a substrate. Although all inhibitors show high in vitro potency, they have drastically different in cellulo potency in inhibiting ectopically expressed M Pro in human 293T cells. All inhibitors including PF-07321332 with a P4 N -terminal carbamide or amide have low in cellulo potency. This trend is reversed when the P4 N -terminal cap is changed to a carbamate. The installation of a P3 O-tert -butyl-threonine improves in cellulo potency. Three molecules that contain a P4 N -terminal carbamate were advanced to antiviral tests on three SARS-CoV-2 variants. They all have high potency with EC 50 values around 1 µM. A control compound with a nitrile warhead and a P4 N -terminal amide has undetectable antiviral potency. Based on all observations, we conclude that a P4 N -terminal carbamate in a boceprevir derivative is key for high antiviral potency against SARS-CoV-2.

12.
ChemMedChem ; 16(6): 942-948, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33283984

RESUMO

The COVID-19 pathogen, SARS-CoV-2, requires its main protease (SC2MPro ) to digest two of its translated long polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus from replicating in infected cells and therefore provides a potential COVID-19 treatment option. Guided by previous medicinal chemistry studies about SARS-CoV-1 main protease (SC1MPro ), we have designed and synthesized a series of SC2MPro inhibitors that contain ß-(S-2-oxopyrrolidin-3-yl)-alaninal (Opal) for the formation of a reversible covalent bond with the SC2MPro active-site cysteine C145. All inhibitors display high potency with Ki values at or below 100 nM. The most potent compound, MPI3, has as a Ki value of 8.3 nM. Crystallographic analyses of SC2MPro bound to seven inhibitors indicated both formation of a covalent bond with C145 and structural rearrangement from the apoenzyme to accommodate the inhibitors. Virus inhibition assays revealed that several inhibitors have high potency in inhibiting the SARS-CoV-2-induced cytopathogenic effect in both Vero E6 and A549/ACE2 cells. Two inhibitors, MPI5 and MPI8, completely prevented the SARS-CoV-2-induced cytopathogenic effect in Vero E6 cells at 2.5-5 µM and A549/ACE2 cells at 0.16-0.31 µM. Their virus inhibition potency is much higher than that of some existing molecules that are under preclinical and clinical investigations for the treatment of COVID-19. Our study indicates that there is a large chemical space that needs to be explored for the development of SC2MPro inhibitors with ultra-high antiviral potency.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , SARS-CoV-2/efeitos dos fármacos , Células A549 , Alanina/análogos & derivados , Alanina/metabolismo , Alanina/farmacologia , Animais , Antivirais/síntese química , Antivirais/metabolismo , Domínio Catalítico , Chlorocebus aethiops , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Cisteína/química , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Ligação Proteica , Pirrolidinonas/síntese química , Pirrolidinonas/metabolismo , Pirrolidinonas/farmacologia , SARS-CoV-2/enzimologia , Células Vero
13.
bioRxiv ; 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32766582

RESUMO

The COVID-19 pathogen, SARS-CoV-2, requires its main protease (SC2M Pro ) to digest two of its translated polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus from replication in infected cells and therefore provides a potential COVID-19 treatment option. Guided by previous medicinal chemistry studies about SARS-CoV-1 main protease (SC1M Pro ), we have designed and synthesized a series of SC2M Pro inhibitors that contain ß-( S -2-oxopyrrolidin-3-yl)-alaninal (Opal) for the formation of a reversible covalent bond with the SC2M Pro active site cysteine C145. All inhibitors display high potency with IC 50 values at or below 100 nM. The most potent compound MPI3 has as an IC 50 value as 8.5 nM. Crystallographic analyses of SC2M Pro bound to 7 inhibitors indicated both formation of a covalent bond with C145 and structural rearrangement from the apoenzyme to accommodate the inhibitors. Virus inhibition assays revealed that several inhibitors have high potency in inhibiting the SARS-CoV-2-induced cytopathogenic effect in both Vero E6 and A549 cells. Two inhibitors MP5 and MPI8 completely prevented the SARS-CoV-2-induced cytopathogenic effect in Vero E6 cells at 2.5-5 µM and A549 cells at 0.16-0.31 µM. Their virus inhibition potency is much higher than some existing molecules that are under preclinical and clinical investigations for the treatment of COVID-19. Our study indicates that there is a large chemical space that needs to be explored for the development of SC2M Pro inhibitors with extreme potency. Due to the urgent matter of the COVID-19 pandemic, MPI5 and MPI8 may be quickly advanced to preclinical and clinical tests for COVID-19.

14.
Nat Commun ; 11(1): 788, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034150

RESUMO

Protein tyrosine phosphatases regulate a myriad of essential subcellular signaling events, yet they remain difficult to study in their native biophysical context. Here we develop a minimally disruptive optical approach to control protein tyrosine phosphatase 1B (PTP1B)-an important regulator of receptor tyrosine kinases and a therapeutic target for the treatment of diabetes, obesity, and cancer-and we use that approach to probe the intracellular function of this enzyme. Our conservative architecture for photocontrol, which consists of a protein-based light switch fused to an allosteric regulatory element, preserves the native structure, activity, and subcellular localization of PTP1B, affords changes in activity that match those elicited by post-translational modifications inside the cell, and permits experimental analyses of the molecular basis of optical modulation. Findings indicate, most strikingly, that small changes in the activity of PTP1B can cause large shifts in the phosphorylation states of its regulatory targets.


Assuntos
Optogenética/métodos , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Recombinantes/metabolismo , Regulação Alostérica , Animais , Técnicas Biossensoriais , Células COS , Chlorocebus aethiops , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Fosforilação , Fototropinas/genética , Fototropinas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Receptor de Insulina/metabolismo , Proteínas Recombinantes/genética
15.
J Clin Invest ; 129(9): 3839-3851, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31403468

RESUMO

We previously generated 32 rotavirus-specific (RV-specific) recombinant monoclonal antibodies (mAbs) derived from B cells isolated from human intestinal resections. Twenty-four of these mAbs were specific for the VP8* fragment of RV VP4, and most (20 of 24) were non-neutralizing when tested in the conventional MA104 cell-based assay. We reexamined the ability of these mAbs to neutralize RVs in human intestinal epithelial cells including ileal enteroids and HT-29 cells. Most (18 of 20) of the "non-neutralizing" VP8* mAbs efficiently neutralized human RV in HT-29 cells or enteroids. Serum RV neutralization titers in adults and infants were significantly higher in HT-29 than MA104 cells and adsorption of these sera with recombinant VP8* lowered the neutralization titers in HT-29 but not MA104 cells. VP8* mAbs also protected suckling mice from diarrhea in an in vivo challenge model. X-ray crystallographic analysis of one VP8* mAb (mAb9) in complex with human RV VP8* revealed that the mAb interaction site was distinct from the human histo-blood group antigen binding site. Since MA104 cells are the most commonly used cell line to detect anti-RV neutralization activity, these findings suggest that prior vaccine and other studies of human RV neutralization responses may have underestimated the contribution of VP8* antibodies to the overall neutralization titer.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Células Epiteliais/imunologia , Intestinos/citologia , Infecções por Rotavirus/imunologia , Adsorção , Animais , Antígenos Virais/imunologia , Linfócitos B/imunologia , Linfócitos B/virologia , Sítios de Ligação , Células CACO-2 , Linhagem Celular , Cristalografia por Raios X , Células Epiteliais/virologia , Genótipo , Haplorrinos , Humanos , Imunoglobulina G/química , Índia , Lactente , Recém-Nascido , Intestinos/virologia , Camundongos , Testes de Neutralização , Polissacarídeos/química , Conformação Proteica , Proteínas Recombinantes/imunologia , Estados Unidos
16.
J Biol Chem ; 294(24): 9476-9488, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31040180

RESUMO

Tissue inhibitors of metalloproteinases (TIMPs) are natural inhibitors of matrix metalloproteinases (MMPs), enzymes that contribute to cancer and many inflammatory and degenerative diseases. The TIMP N-terminal domain binds and inhibits an MMP catalytic domain, but the role of the TIMP C-terminal domain in MMP inhibition is poorly understood. Here, we employed yeast surface display for directed evolution of full-length human TIMP-1 to develop MMP-3-targeting ultrabinders. By simultaneously incorporating diversity into both domains, we identified TIMP-1 variants that were up to 10-fold improved in binding MMP-3 compared with WT TIMP-1, with inhibition constants (Ki ) in the low picomolar range. Analysis of individual and paired mutations from the selected TIMP-1 variants revealed cooperative effects between distant residues located on the N- and C-terminal TIMP domains, positioned on opposite sides of the interaction interface with MMP-3. Crystal structures of MMP-3 complexes with TIMP-1 variants revealed conformational changes in TIMP-1 near the cooperative mutation sites. Affinity was strengthened by cinching of a reciprocal "tyrosine clasp" formed between the N-terminal domain of TIMP-1 and proximal MMP-3 interface and by changes in secondary structure within the TIMP-1 C-terminal domain that stabilize interdomain interactions and improve complementarity to MMP-3. Our protein engineering and structural studies provide critical insight into the cooperative function of TIMP domains and the significance of peripheral TIMP epitopes in MMP recognition. Our findings suggest new strategies to engineer TIMP proteins for therapeutic applications, and our directed evolution approach may also enable exploration of functional domain interactions in other protein systems.


Assuntos
Evolução Molecular Direcionada , Metaloproteinase 3 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Humanos , Metaloproteinase 3 da Matriz/química , Metaloproteinase 3 da Matriz/genética , Inibidores de Metaloproteinases de Matriz/química , Mutação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Inibidor Tecidual de Metaloproteinase-1/química , Inibidor Tecidual de Metaloproteinase-1/genética , Técnicas do Sistema de Duplo-Híbrido
17.
Nature ; 569(7758): 718-722, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31118511

RESUMO

Nucleic acids from bacteria or viruses induce potent immune responses in infected cells1-4. The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses5,6. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor7,8. It catalyses the synthesis of cyclic GMP-AMP (cGAMP)9-12, which stimulates the induction of type I interferons through the STING-TBK1-IRF-3 signalling axis13-15. STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase8,16. The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK18,17-20. Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons21. However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFNß after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. These findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders.


Assuntos
Motivos de Aminoácidos , Sequência Conservada , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Cristalografia por Raios X , Ativação Enzimática , Células HEK293 , Humanos , Interferon beta/metabolismo , Proteínas de Membrana/genética , Modelos Moleculares , Mutação , Nucleotídeos Cíclicos/metabolismo , Ligação Proteica , Transdução de Sinais
18.
ACS Omega ; 3(3): 3104-3112, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29600290

RESUMO

The most common biotransformation of trivalent inorganic arsenic (As(III)) is methylation to mono-, di-, and trimethylated species. Methylation is catalyzed by As(III) S-adenosylmethionine (SAM) methyltransferase (termed ArsM in microbes and AS3MT in animals). Methylarsenite (MAs(III)) is both the product of the first methylation step and the substrate of the second methylation step. When the rate of the overall methylation reaction was determined with As(III) as the substrate, the first methylation step was rapid, whereas the second methylation step was slow. In contrast, when MAs(III) was used as the substrate, the rate of methylation was as fast as the first methylation step when As(III) was used as the substrate. These results indicate that there is a slow conformational change between the first and second methylation steps. The structure of CmArsM from the thermophilic alga Cyanidioschyzon merolae sp. 5508 was determined with bound MAs(III) at 2.27 Å resolution. The methyl group is facing the solvent, as would be expected when MAs(III) is bound as the substrate rather than facing the SAM-binding site, as would be expected for MAs(III) as a product. We propose that the rate-limiting step in arsenic methylation is slow reorientation of the methyl group from the SAM-binding site to the solvent, which is linked to the conformation of the side chain of a conserved residue Tyr70.

19.
Biochem J ; 474(14): 2389-2403, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28583991

RESUMO

Cyclic AMP and cyclic GMP are ubiquitous second messengers that regulate the activity of effector proteins in all forms of life. The main effector proteins, the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) and the 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG), are preferentially activated by cAMP and cGMP, respectively. However, the molecular basis of this cyclic nucleotide selectivity is still not fully understood. Analysis of isolated cyclic nucleotide-binding (CNB) domains of PKA regulatory subunit type Iα (RIα) reveals that the C-terminal CNB-B has a higher cAMP affinity and selectivity than the N-terminal CNB-A. Here, we show that introducing cGMP-specific residues using site-directed mutagenesis reduces the selectivity of CNB-B, while the combination of two mutations (G316R/A336T) results in a cGMP-selective binding domain. Furthermore, introducing the corresponding mutations (T192R/A212T) into the PKA RIα CNB-A turns this domain into a highly cGMP-selective domain, underlining the importance of these contacts for achieving cGMP specificity. Binding data with the generic purine nucleotide 3',5'-cyclic inosine monophosphate (cIMP) reveal that introduced arginine residues interact with the position 6 oxygen of the nucleobase. Co-crystal structures of an isolated CNB-B G316R/A336T double mutant with either cAMP or cGMP reveal that the introduced threonine and arginine residues maintain their conserved contacts as seen in PKG I CNB-B. These results improve our understanding of cyclic nucleotide binding and the molecular basis of cyclic nucleotide specificity.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Modelos Moleculares , Substituição de Aminoácidos , Arginina/química , Sítios de Ligação , Biologia Computacional , Cristalografia por Raios X , AMP Cíclico/química , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/química , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , GMP Cíclico/química , Sistemas Inteligentes , Humanos , Cinética , Ligantes , Mutagênese Sítio-Dirigida , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Treonina/química
20.
Sci Rep ; 7(1): 223, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28303005

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) charge tRNAs with their cognate amino acid, an essential precursor step to loading of charged tRNAs onto the ribosome and addition of the amino acid to the growing polypeptide chain during protein synthesis. Because of this important biological function, aminoacyl-tRNA synthetases have been the focus of anti-infective drug development efforts and two aaRS inhibitors have been approved as drugs. Several researchers in the scientific community requested aminoacyl-tRNA synthetases to be targeted in the Seattle Structural Genomics Center for Infectious Disease (SSGCID) structure determination pipeline. Here we investigate thirty-one aminoacyl-tRNA synthetases from infectious disease organisms by co-crystallization in the presence of their cognate amino acid, ATP, and/or inhibitors. Crystal structures were determined for a CysRS from Borrelia burgdorferi bound to AMP, GluRS from Borrelia burgdorferi and Burkholderia thailandensis bound to glutamic acid, a TrpRS from the eukaryotic pathogen Encephalitozoon cuniculi bound to tryptophan, a HisRS from Burkholderia thailandensis bound to histidine, and a LysRS from Burkholderia thailandensis bound to lysine. Thus, the presence of ligands may promote aaRS crystallization and structure determination. Comparison with homologous structures shows conformational flexibility that appears to be a recurring theme with this enzyme class.


Assuntos
Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Borrelia burgdorferi/enzimologia , Burkholderia/enzimologia , Encephalitozoon cuniculi/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Doenças Transmissíveis/microbiologia , Cristalografia por Raios X , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA