Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(7): 4503-4531, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37001055

RESUMO

Natural glycosaminoglycans (GAGs) are arguably the most diverse collection of natural products. Unfortunately, this bounty of structures remains untapped. Decades of research has realized only one GAG-like synthetic, small-molecule drug, fondaparinux. This represents an abysmal output because GAGs present a frontier that few medicinal chemists, and even fewer pharmaceutical companies, dare to undertake. GAGs are heterogeneous, polymeric, polydisperse, highly water soluble, synthetically challenging, too rapidly cleared, and difficult to analyze. Additionally, GAG binding to proteins is not very selective and GAG-binding sites are shallow. This Perspective attempts to transform this negative view into a much more promising one by highlighting recent advances in GAG mimetics. The Perspective focuses on the principles used in the design/discovery of drug-like, synthetic, sulfated small molecules as allosteric modulators of coagulation factors, such as antithrombin, thrombin, and factor XIa. These principles will also aid the design/discovery of sulfated agents against cancer, inflammation, and microbial infection.


Assuntos
Glicosaminoglicanos , Sulfatos , Glicosaminoglicanos/farmacologia , Glicosaminoglicanos/metabolismo , Sulfatos/química , Trombina/metabolismo , Sítios de Ligação
2.
Angew Chem Int Ed Engl ; 61(49): e202211320, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36205924

RESUMO

The insulin-like growth factor-1 receptor (IGF-1R) is a receptor tyrosine kinase (RTK) that plays critical roles in cancer. Microarray, computational, thermodynamic, and cellular imaging studies reveal that activation of IGF-1R by its cognate ligand IGF1 is inhibited by shorter, soluble heparan sulfate (HS) sequences (e.g., HS06), whereas longer polymeric chains do not inhibit the RTK, a phenomenon directly opposed to the traditional relationship known for GAG-protein systems. The inhibition arises from smaller oligosaccharides binding in a unique pocket in the IGF-1R ectodomain, which competes with the natural cognate ligand IGF1. This work presents a highly interesting observation on preferential and competing inhibition of IGF-1R by smaller sequences, whereas polysaccharides are devoid of this function. These insights will be of major value to glycobiologists and anti-cancer drug discoverers.


Assuntos
Polissacarídeos , Receptores de Somatomedina , Humanos , Ligantes , Neoplasias/metabolismo , Transdução de Sinais , Receptores de Somatomedina/metabolismo
3.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299163

RESUMO

Transforming growth factor-beta (TGF-ß), a member of the TGF-ß cytokine superfamily, is known to bind to sulfated glycosaminoglycans (GAGs), but the nature of this interaction remains unclear. In a recent study, we found that preterm human milk TGF-ß2 is sequestered by chondroitin sulfate (CS) in its proteoglycan form. To understand the molecular basis of the TGF-ß2-CS interaction, we utilized the computational combinatorial virtual library screening (CVLS) approach in tandem with molecular dynamics (MD) simulations. All possible CS oligosaccharides were generated in a combinatorial manner to give 24 di- (CS02), 192 tetra- (CS04), and 1536 hexa- (CS06) saccharides. This library of 1752 CS oligosaccharides was first screened against TGF-ß2 using the dual filter CVLS algorithm in which the GOLDScore and root-mean-square-difference (RMSD) between the best bound poses were used as surrogate markers for in silico affinity and in silico specificity. CVLS predicted that both the chain length and level of sulfation are critical for the high affinity and high specificity recognition of TGF-ß2. Interestingly, CVLS led to identification of two distinct sites of GAG binding on TGF-ß2. CVLS also deduced the preferred composition of the high specificity hexasaccharides, which were further assessed in all-atom explicit solvent MD simulations. The MD results confirmed that both sites of binding form stable GAG-protein complexes. More specifically, the highly selective CS chains were found to engage the TGF-ß2 monomer with high affinity. Overall, this work present key principles of recognition with regard to the TGF-ß2-CS system. In the process, it led to the generation of the in silico library of all possible CS oligosaccharides, which can be used for advanced studies on other protein-CS systems. Finally, the study led to the identification of unique CS sequences that are predicted to selectively recognize TGF-ß2 and may out-compete common natural CS biopolymers.


Assuntos
Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Biologia Computacional/métodos , Bibliotecas Digitais , Simulação de Dinâmica Molecular , Fator de Crescimento Transformador beta2/química , Fator de Crescimento Transformador beta2/metabolismo , Humanos , Conformação Proteica
4.
Neoplasia ; 23(3): 348-359, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33640759

RESUMO

High-dose acetaminophen (AAP) with delayed rescue using n-acetylcysteine (NAC), the FDA-approved antidote to AAP overdose, has demonstrated promising antitumor efficacy in early phase clinical trials. However, the mechanism of action (MOA) of AAP's anticancer effects remains elusive. Using clinically relevant AAP concentrations, we evaluated cancer stem cell (CSC) phenotype in vitro and in vivo in lung cancer and melanoma cells with diverse driver mutations. Associated mechanisms were also studied. Our results demonstrated that AAP inhibited 3D spheroid formation, self-renewal, and expression of CSC markers when human cancer cells were grown in serum-free CSC media. Similarly, anti-CSC activity was demonstrated in vivo in xenograft models - tumor formation following in vitro treatment and ex-vivo spheroid formation following in vivo treatment. Intriguingly, NAC, used to mitigate AAP's liver toxicity, did not rescue cells from AAP's anti-CSC effects, and AAP failed to reduce glutathione levels in tumor xenograft in contrast to mice liver tissue suggesting nonglutathione-related MOA. In fact, AAP mediates its anti-CSC effect via inhibition of STAT3. AAP directly binds to STAT3 with an affinity in the low micromolar range and a high degree of specificity for STAT3 relative to STAT1. These findings have high immediate translational significance concerning advancing AAP with NAC rescue to selectively rescue hepatotoxicity while inhibiting CSCs. The novel mechanism of selective STAT3 inhibition has implications for developing rational anticancer combinations and better patient selection (predictive biomarkers) for clinical studies and developing novel selective STAT3 inhibitors using AAP's molecular scaffold.


Assuntos
Acetaminofen/farmacologia , Antineoplásicos/farmacologia , Radicais Livres/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Antígeno AC133/metabolismo , Acetaminofen/administração & dosagem , Antineoplásicos/administração & dosagem , Biomarcadores Tumorais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Técnicas de Silenciamento de Genes , Humanos , Interleucina-6/antagonistas & inibidores , Neoplasias Pulmonares , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
5.
J Med Chem ; 62(11): 5501-5511, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31074986

RESUMO

Cystic fibrosis (CF) is a disease of dysregulated salt and fluid homeostasis that results in the massive accumulation of neutrophil elastase, resulting in lung degradation and death. The current CF therapy relies on inhaled deoxyribonuclease and hypertonic saline but does not address the elastolytic degradation of the lung. We reasoned that allosteric agents targeting the heparin-binding site of neutrophil elastase would offer a therapeutic paradigm. Screening a library of 60 nonsaccharide glycosaminoglycan mimetics (NSGMs) led to the discovery of 23 hits against neutrophil elastase. To identify a lead NSGM that works in sync with the current CF-relieving agents, we developed a rigorous protocol based on fundamental computational, biochemical, mechanistic, and adverse effect studies. The lead NSGM so identified neutralized neutrophil elastase present in the sputum of CF patients in the presence of deoxyribonuclease and high-salt conditions. Our work presents the process for discovering potent, small, synthetic, allosteric, anti-CF agents, while also identifying a novel lead for further studies in animal models of CF.


Assuntos
Fibrose Cística/tratamento farmacológico , Descoberta de Drogas , Heparina/metabolismo , Elastase de Leucócito/metabolismo , Terapia de Alvo Molecular , Escarro/efeitos dos fármacos , Escarro/metabolismo , Sítios de Ligação/efeitos dos fármacos , Humanos , Relação Estrutura-Atividade
6.
J Biol Chem ; 293(32): 12480-12490, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29903912

RESUMO

Cystic fibrosis (CF) is a multifactorial disease in which dysfunction of protease-antiprotease balance plays a key role. The current CF therapy relies on dornase α, hypertonic saline, and antibiotics and does not address the high neutrophil elastase (NE) activity observed in the lung and sputum of CF patients. Our hypothesis is that variants of heparin, which potently inhibit NE but are not anticoagulant, would help restore the protease-antiprotease balance in CF. To realize this concept, we studied molecular principles governing the effectiveness of different heparins, especially 2-O,3-O-desulfated heparin (ODSH), in the presence of sputum components and therapeutic agents. Using sputa from CF patients and an NE activity assay, we found that heparins are ineffective if used in the absence of dornase. This is true even when mucolytics, such as DTT or N-acetylcysteine, were used. Computational modeling suggested that ODSH and DNA compete for binding to an overlapping allosteric site on NE, which reduces the anti-NE potential of ODSH. NE inhibition of both DNA and ODSH is chain length-dependent, but ODSH chains exhibit higher potency per unit residue length. Likewise, ODSH chains exhibit higher NE inhibition potential compared with DNA chains in the presence of saline. These studies suggest fundamental differences in DNA and ODSH recognition and inhibition of NE despite engaging overlapping sites and offer unique insights into molecular principles that could be used in developing antiprotease agents in the presence of current treatments, such as dornase and hypertonic saline.


Assuntos
Fibrose Cística/fisiopatologia , Heparina/análogos & derivados , Elastase de Leucócito/antagonistas & inibidores , Elastase de Leucócito/metabolismo , Oligossacarídeos/farmacologia , Inibidores de Proteases/farmacologia , Escarro/enzimologia , Simulação por Computador , Heparina/farmacologia , Humanos
7.
Am J Respir Cell Mol Biol ; 56(1): 90-98, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27585400

RESUMO

High mobility group box 1 (HMGB1) is an alarmin released from macrophages after infection or inflammation and is a biomarker of lung disease progression in patients with cystic fibrosis. We reported that 2-O, 3-O desulfated heparin (ODSH) inhibits the release of HMGB1 from murine macrophages triggered by neutrophil elastase both in vivo and in vitro. HMGB1 shuttles between the nucleus and the cytoplasm. When acetylated at lysine residues in the nuclear localization signal domains, HMGB1 is sequestered in the cytoplasm and is fated for secretion. In this study, we investigated the mechanism by which ODSH blocks HMGB1 secretion. We tested whether ODSH inhibits the activity of p300, a histone acetyltransferase that has been linked to HMGB1 acetylation and release. ODSH inhibited both neutrophil elastase and LPS-triggered HMGB1 release from the murine macrophage cell line RAW264.7 in a concentration-dependent manner. Fluorescein-labeled ODSH was taken up by RAW264.7 cells into the cytoplasm as well as the nucleus, suggesting an intracellular site of action of ODSH for blocking HMGB1 release. ODSH inhibited RAW264.7 cell nuclear extract, human macrophage nuclear extract, and recombinant p300 HAT activity in vitro, resulting in the failure to acetylate HMGB1. In silico molecular modeling predicted that of the numerous possible ODSH sequences, a small number preferentially recognizes a specific binding site on p300. Fluorescence binding studies showed that ODSH bound p300 tightly (dissociation constant ∼1 nM) in a highly cooperative manner. These results suggest that ODSH inhibited HMGB1 release, at least in part, by direct molecular inhibition of p300 HAT activity.


Assuntos
Proteína HMGB1/metabolismo , Heparina/análogos & derivados , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Acetilação/efeitos dos fármacos , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Simulação por Computador , Heparina/farmacologia , Humanos , Elastase de Leucócito/farmacologia , Lipopolissacarídeos/farmacologia , Lisina/metabolismo , Camundongos , Modelos Moleculares , Células RAW 264.7 , Espectrometria de Fluorescência , Fatores de Transcrição de p300-CBP/metabolismo
8.
Am J Physiol Gastrointest Liver Physiol ; 309(3): G171-80, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26045614

RESUMO

Human milk contains biologically important amounts of transforming growth factor-ß2 isoform (TGF-ß2), which is presumed to protect against inflammatory gut mucosal injury in the neonate. In preclinical models, enterally administered TGF-ß2 can protect against experimental necrotizing enterocolitis, an inflammatory bowel necrosis of premature infants. In this study, we investigated whether TGF-ß bioactivity in human preterm milk could be enhanced for therapeutic purposes by adding recombinant TGF-ß2 (rTGF-ß2) to milk prior to feeding. Milk-borne TGF-ß bioactivity was measured by established luciferase reporter assays. Molecular interactions of TGF-ß2 were investigated by nondenaturing gel electrophoresis and immunoblots, computational molecular modeling, and affinity capillary electrophoresis. Addition of rTGF-ß2 (20-40 nM) to human preterm milk samples failed to increase TGF-ß bioactivity in milk. Milk-borne TGF-ß2 was bound to chondroitin sulfate (CS) containing proteoglycan(s) such as biglycan, which are expressed in high concentrations in milk. Chondroitinase treatment of milk increased the bioactivity of both endogenous and rTGF-ß2, and consequently, enhanced the ability of preterm milk to suppress LPS-induced NF-κB activation in macrophages. These findings provide a mechanism for the normally low bioavailability of milk-borne TGF-ß2 and identify chondroitinase digestion of milk as a potential therapeutic strategy to enhance the anti-inflammatory effects of preterm milk.


Assuntos
Condroitinases e Condroitina Liases/metabolismo , Enterocolite Necrosante , Leite Humano , Fator de Crescimento Transformador beta2/metabolismo , Animais , Anti-Inflamatórios/metabolismo , Disponibilidade Biológica , Linhagem Celular , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Enterocolite Necrosante/metabolismo , Enterocolite Necrosante/prevenção & controle , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Ativação de Macrófagos/fisiologia , Camundongos , Leite Humano/enzimologia , Leite Humano/metabolismo , NF-kappa B/metabolismo , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA