Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; : e2402953, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923392

RESUMO

While peptide-based drug development is extensively explored, this strategy has limitations due to rapid excretion from the body (or shorter half-life in the body) and vulnerability to protease-mediated degradation. To overcome these limitations, a novel strategy for the development of a peptide-based anticancer agent is introduced, utilizing the conformation switch property of a chameleon sequence stretch (PEP1) derived from a mycobacterium secretory protein, MPT63. The selected peptide is then loaded into a new porous organic polymer (PG-DFC-POP) synthesized using phloroglucinol and a cresol derivative via a condensation reaction to deliver the peptide selectively to cancer cells. Utilizing ensemble and single-molecule approaches, this peptide undergoes a transition from a disordered to an alpha-helical conformation, triggered by the acidic environment within cancer cells that is demonstrated. This adopted alpha-helical conformation resulted in the formation of proteolysis-resistant oligomers, which showed efficient membrane pore-forming activity selectively for negatively charged phospholipids accumulated in cancer cell membranes. The experimental results demonstrated that the peptide-loaded PG-DFC-POP-PEP1 exhibited significant cytotoxicity in cancer cells, leading to cell death through the Pyroptosis pathway, which is established by monitoring numerous associated events starting from lysosome membrane damage to GSDMD-induced cell membrane demolition. This novel conformational switch-based drug design strategy is believed to have great potential in endogenous environment-responsive cancer therapy and the development of future drug candidates to mitigate cancers.

2.
Elife ; 102021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33825682

RESUMO

Aggregation of Cu-Zn superoxide dismutase (SOD1) is implicated in the motor neuron disease, amyotrophic lateral sclerosis (ALS). Although more than 140 disease mutations of SOD1 are available, their stability or aggregation behaviors in membrane environment are not correlated with disease pathophysiology. Here, we use multiple mutational variants of SOD1 to show that the absence of Zn, and not Cu, significantly impacts membrane attachment of SOD1 through two loop regions facilitating aggregation driven by lipid-induced conformational changes. These loop regions influence both the primary (through Cu intake) and the gain of function (through aggregation) of SOD1 presumably through a shared conformational landscape. Combining experimental and theoretical frameworks using representative ALS disease mutants, we develop a 'co-factor derived membrane association model' wherein mutational stress closer to the Zn (but not to the Cu) pocket is responsible for membrane association-mediated toxic aggregation and survival time scale after ALS diagnosis.


Amyotrophic lateral sclerosis, or ALS, is an incurable neurodegenerative disease in which a person slowly loses specialized nerve cells that control voluntary movement. It is not fully understood what causes this fatal disease. However, it is suspected that clumps, or aggregates, of a protein called SOD1 in nerve cells may play a crucial role. More than 140 mutations in the gene for SOD1 have been linked to ALS, with varying degrees of severity. But it is still unclear how these mutations cause SOD1 aggregation or how different mutations influence the survival rate of the disease. The protein SOD1 contains a copper ion and a zinc ion, and it is possible that mutations that affect how these two ions bind to SOD1 influences the severity of the disease. To investigate this, Sannigrahi, Chowdhury, Das et al. genetically engineered mutants of the SOD1 protein which each contain only one metal ion. Experiments on these mutated proteins showed that the copper ion is responsible for the protein's role in neutralizing harmful reactive molecules, while the zinc ion stabilizes the protein against aggregation. Sannigrahi et al. found that when the zinc ion was removed, the SOD1 protein attached to a structure inside the cell called the mitochondria and formed toxic aggregates. Sannigrahi et al. then used these observations to build a computational model that incorporated different mutations that have been previously associated with ALS. The model suggests that mutations close to the site where zinc binds to the SOD1 protein increase disease severity and shorten survival time after diagnosis. This model was then experimentally validated using two disease variants of ALS that have mutations close to the sites where zinc or copper binds. These findings still need to be tested in animals and humans to see if these mechanisms hold true in a multicellular organism. This discovery could help design new ALS treatments that target the zinc binding site on SOD1 or disrupt the protein's interactions with the mitochondria.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Membrana Celular/enzimologia , Neurônios/enzimologia , Superóxido Dismutase-1/metabolismo , Zinco/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Sítios de Ligação , Linhagem Celular Tumoral , Membrana Celular/patologia , Cobre/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Neurônios/patologia , Agregados Proteicos , Agregação Patológica de Proteínas , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade , Superóxido Dismutase-1/genética
3.
ACS Omega ; 5(27): 16395-16405, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32685802

RESUMO

We report here the preparation of an aminoxy amide-based pseudopeptide-derived building block using furanoid sugar molecules. Through the cyclo-oligomerization reaction, we generate a hybrid triazole/aminoxy amide macrocycle using the as-prepared building block. The novel conformation of the macrocycle has been characterized using NMR and molecular modeling studies, which show a strong resemblance of our synthesized compound to d-,l-α-aminoxy acid-based cyclic peptides that contain uniform backbone chirality. We observe that the macrocycle can efficiently and selectively bind Cl- ion and transport Cl- ion across a lipid bilayer. 1H NMR anion binding studies suggest a coherent relationship between the acidity of aminoxy amide N-H and triazole C-H proton binding strength. Using time-based fluorescence assay, we show that the macrocycle acts as a mobile transporter and follows an antiport mechanism. Our synthesized macrocycle imposes cancer cell death by disrupting ionic homeostasis through Cl- ion transport. The macrocycle induced cytochrome c leakage and changes in mitochondrial membrane potential along with activation of family of caspases, suggesting that the cellular apoptosis occurs through a caspase-dependent intrinsic pathway. The present results suggest the possibility of using the macrocycle as a biological tool of high therapeutic value.

4.
ACS Chem Biol ; 14(7): 1601-1610, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31241303

RESUMO

Virulent Mycobacterium tuberculosis (MTB) strains cause cell death of macrophages (Mϕ) inside TB granuloma using a mechanism which is not well understood. Many bacterial systems utilize toxins to induce host cell damage, which occurs along with immune evasion. These toxins often use chameleon sequences to generate an environment-sensitive conformational switch, facilitating the process of infection. The presence of toxins is not yet known for MTB. Here, we show that MTB-secreted immunogenic MPT63 protein undergoes a switch from ß-sheet to helix in response to mutational and environmental stresses. MPT63 in its helical form creates pores in both synthetic and Mϕ membranes, while the native ß-sheet protein remains inert toward membrane interactions. Using fluorescence correlation spectroscopy and atomic force microscopy, we show further that the helical form undergoes self-association to produce toxic oligomers of different morphology. Trypan blue and flow cytometry analyses reveal that the helical state can be utilized by MTB for killing Mϕ cells. Collectively, our study emphasizes for the first time a toxin-like behavior of MPT63 induced by an environment-dependent conformational switch, resulting in membrane pore formation by toxic oligomers and Mϕ cell death.


Assuntos
Proteínas de Bactérias/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/fisiologia , Tuberculose/metabolismo , Proteínas de Bactérias/química , Morte Celular , Membrana Celular/microbiologia , Membrana Celular/patologia , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/patologia , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Tuberculose/microbiologia , Tuberculose/patologia
5.
Mol Neurobiol ; 56(9): 6551-6565, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30868446

RESUMO

The amyloid cascade hypothesis dealing with the senile plaques is until date thought to be one of the causative pathways leading to the pathophysiology of Alzheimer's disease (AD). Though many aggregation inhibitors of misfolded amyloid beta (Aß42) peptide have failed in clinical trials, there are some positive aspects of the designed therapeutic peptides for diseases involving proteinaceous aggregation. Here, we evaluated a smart design of side chain tripeptide (Leu-Val-Phe)-based polymeric inhibitor addressing the fundamental hydrophobic amino acid stretch "Lys-Leu-Val-Phe-Phe-Ala" (KLVFFA) of the Aß42 peptide. The in vitro analyses performed through the thioflavin T (ThT) fluorescence assay, infrared spectroscopy, isothermal calorimetry, cytotoxicity experiments, and so on evinced a promising path towards the development of new age AD therapeutics targeting the inhibition of misfolded Aß42 peptide fibrillization. The in silico simulations done contoured the mechanism of drug action of the present block copolymer as the competitive inhibition of aggregate-prone hydrophobic stretch of Aß42. Graphical abstract The production of misfolded Aß42 peptide from amyloid precursor protein initiates amyloidosis pathway which ends with the deposition of fibrils via the oligomerization and aggregation of Aß42 monomers. The side chain tripeptide-based PEGylated polymer targets these Aß42 monomers and oligomers inhibiting their aggregation. This block copolymer also binds and helps degrading the preformed fibrils of Aß42.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Polietilenoglicóis/química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/ultraestrutura , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Ligantes , Simulação de Dinâmica Molecular , Polietilenoglicóis/síntese química , Eletricidade Estática
6.
J Phys Chem B ; 121(8): 1824-1834, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28182432

RESUMO

KMP-11 is a small protein that is believed to control the overall bilayer pressure of the Leishmania parasite. Recent results have suggested that membrane binding and the presence of cholesterol affect the efficacy of Leishmanial infection, in which KMP-11 plays an important role. Nevertheless, there exists no systematic study of membrane interaction with KMP-11 either in the absence or presence of cholesterol. In this article, we investigated the interaction between KMP-11 and phospholipid membranes using an unsaturated (PC 18:1; 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)) and saturated (PC 12:0; 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC)) lipid as membrane mimics. Additionally, we studied the effect of cholesterol on the protein-membrane interaction. Steady-state as well as time-resolved fluorescence spectroscopy, isothermal titration calorimetry (ITC), and ζ-potential measurements were used for the determination of the binding constants for the wild-type (WT) and single-site tryptophan mutants. Single-site tryptophan mutants were designed to make sure that the tryptophan residues sample different surface exposures in different mutants. In the absence of cholesterol, the membrane-binding affinities of the partially exposed and buried tryptophan mutants (Y5W and Y48W, respectively) were found to be greater than those of the WT protein. In the presence of cholesterol, the binding constants of the WT and Y48W mutant were found to decrease with an increase in cholesterol concentration. This was in contrast to that in the Y5W and F77W mutants, in which the binding constants increased on adding cholesterol. The present study highlights the interplay among the conformational architecture of a protein, its interaction with the membrane, and membrane composition in modulating the survival of a Leishmania parasite inside host macrophages.


Assuntos
Colesterol/metabolismo , Leishmania/fisiologia , Leishmaniose/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Protozoários/metabolismo , Triptofano/metabolismo , Interações Hospedeiro-Parasita , Humanos , Leishmania/química , Leishmania/genética , Leishmania/parasitologia , Leishmaniose/parasitologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Modelos Moleculares , Mutação Puntual , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Triptofano/química , Triptofano/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA