Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 309(6): F523-30, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26109087

RESUMO

In many circumstances, the pathogenesis of distal renal tubular acidosis (dRTA) is not understood. In the present study, we report that a mouse model lacking the electrogenic Na(+)-HCO3 (-) cotransporter [NBCe2/Slc4a5; NBCe2 knockout (KO) mice] developed dRTA after an oral acid challenge. NBCe2 expression was identified in the connecting tubule (CNT) of wild-type mice, and its expression was significantly increased after acid loading. NBCe2 KO mice did not have dRTA when on a standard mouse diet. However, after acid loading, NBCe2 KO mice exhibited complete features of dRTA, characterized by insufficient urinary acidification, hyperchloremic hypokalemic metabolic acidosis, and hypercalciuria. Additional experiments showed that NBCe2 KO mice had decreased luminal transepithelial potential in the CNT, as revealed by micropuncture. Further immunofluorescence and Western blot experiments found that NBCe2 KO mice had increased expression of H(+)-ATPase B1 in the plasma membrane. These results showed that NBCe2 KO mice with acid loading developed increased urinary K(+) and Ca(2+) wasting due to decreased luminal transepithelial potential in the CNT. NBCe2 KO mice compensated to maintain systemic pH by increasing H(+)-ATPase in the plasma membrane. Therefore, defects in NBCe2 can cause dRTA, and NBCe2 has an important role to regulate urinary acidification and the transport of K(+) and Ca(2+) in the distal nephron.


Assuntos
Acidose Tubular Renal/metabolismo , Túbulos Renais Distais/metabolismo , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/fisiologia , Animais , Membrana Celular/metabolismo , Cloro/metabolismo , Hipercalciúria/metabolismo , Hipopotassemia/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , ATPases Translocadoras de Prótons/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo
2.
PLoS One ; 10(1): e0115515, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25607984

RESUMO

A low Na, high K diet (LNaHK) is associated with a low rate of cardiovascular (CV) disease in many societies. Part of the benefit of LNaHK relies on its diuretic effects; however, the role of aldosterone (aldo) in the diuresis is not understood. LNaHK mice exhibit an increase in renal K secretion that is dependent on the large, Ca-activated K channel, (BK-α with accessory BK-ß4; BK-α/ß4). We hypothesized that aldo causes an osmotic diuresis by increasing BK-α/ß4-mediated K secretion in LNaHK mice. We found that the plasma aldo concentration (P[aldo]) was elevated by 10-fold in LNaHK mice compared with control diet (Con) mice. We subjected LNaHK mice to either sham surgery (sham), adrenalectomy (ADX) with low aldo replacement (ADX-LA), or ADX with high aldo replacement (ADX-HA). Compared to sham, the urinary flow, K excretion rate, transtubular K gradient (TTKG), and BK-α and BK-ß4 expressions, were decreased in ADX-LA, but not different in ADX-HA. BK-ß4 knockout (ß4KO) and WT mice exhibited similar K clearance and TTKG in the ADX-LA groups; however, in sham and ADX-HA, the K clearance and TTKG of ß4KO were less than WT. In response to amiloride treatment, the osmolar clearance was increased in WT Con, decreased in WT LNaHK, and unchanged in ß4KO LNaHK. These data show that the high P[aldo] of LNaHK mice is necessary to generate a high rate of BK-α/ß4-mediated K secretion, which creates an osmotic diuresis that may contribute to a reduction in CV disease.


Assuntos
Aldosterona/metabolismo , Dieta , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Potássio/farmacologia , Potássio/farmacocinética , Sódio/farmacologia , Animais , Doenças Cardiovasculares/dietoterapia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Camundongos
3.
J Biol Chem ; 287(46): 38552-8, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23002235

RESUMO

The epithelial Na(+) channel (ENaC) in the aldosterone-sensitive distal nephron (ASDN) is under tonic inhibition by a local purinergic signaling system responding to changes in dietary sodium intake. Normal BK(Ca) channel function is required for flow-sensitive ATP secretion in the ASDN. We tested here whether ATP secreted through connexin channels in a coupled manner with K(+) efflux through BK(Ca) channels is required for inhibitory purinergic regulation of ENaC in response to increases in sodium intake. Inhibition of connexin channels relieves purinergic inhibition of ENaC. Deletion of the BK-ß4 regulatory subunit, which is required for normal BK(Ca) channel function and flow-sensitive ATP secretion in the ASDN, suppresses increases in urinary ATP in response to increases in sodium intake. As a consequence, ENaC activity, particularly in the presence of high sodium intake, is inappropriately elevated in BK-ß4 null mice. ENaC in BK-ß4 null mice, however, responds normally to exogenous ATP, indicating that increases in activity do not result from end-organ resistance but rather from lowered urinary ATP. Consistent with this, disruption of purinergic regulation increases ENaC activity in wild type but not BK-ß4 null mice. Consequently, sodium excretion is impaired in BK-ß4 null mice. These results demonstrate that the ATP secreted in the ASDN in a BK(Ca) channel-dependent manner is physiologically available for purinergic inhibition of ENaC in response to changes in sodium homeostasis. Impaired sodium excretion resulting form loss of normal purinergic regulation of ENaC in BK-ß4 null mice likely contributes to their elevated blood pressure.


Assuntos
Trifosfato de Adenosina/química , Canais Epiteliais de Sódio/metabolismo , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Néfrons/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Pressão Sanguínea , Conexinas/química , Homeostase , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , Sódio/química , Sódio/metabolismo , Sódio na Dieta/metabolismo
4.
Curr Opin Nephrol Hypertens ; 20(5): 512-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21670674

RESUMO

PURPOSE OF REVIEW: This review summarizes recent studies of hypertension associated with a defect in renal K excretion due to genetic deletions of various components of the large, Ca-activated K channel (BK), and describes new evidence and theories regarding K secretory roles of BK in intercalated cells. RECENT FINDINGS: Isolated perfused tubule methods have revealed the importance of BK in flow-induced K secretion. Subsequently, mice with genetically deleted BK subunits revealed the complexities of BK-mediated K secretion. Deletion of BKα results in extreme aldosteronism, hypertension, and an absence of flow-induced K secretion. Deletion of the BKß1 ancillary subunit results in decreased handling of a K load, increased plasma K, mild aldosteronism and hypertension that is exacerbated by a high K diet. Deletion of BKß4 (ß4KO) leads to insufficient K handling, high plasma K, fluid retention, but with milder hypertension. Fluid retention in ß4KO may be the result of insufficient flow-induced secretion of adenosine triphosphate (ATP), which normally inhibits epithelial Na channels (ENaCs). SUMMARY: Classical physiological analysis of electrolyte handling in knockout mice has enlightened our understanding of the mechanism of handling K loads by renal K channels. Studies have focused on the different roles of BK-α/ß1 and BK-α/ß4 in the kidney. BKß1 hypertension may be a 'three-hit' hypertension, involving a K secretory defect, elevated production of aldosterone, and increased vascular tone. The disorders observed in BK knockout mice have shed new insights on the importance of proper renal K handling for maintaining volume balance and blood pressure.


Assuntos
Hipertensão/metabolismo , Túbulos Renais/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Potássio/metabolismo , Aldosterona/metabolismo , Animais , Pressão Sanguínea , Humanos , Hipertensão/fisiopatologia , Transporte de Íons , Túbulos Renais/fisiopatologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/deficiência , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Camundongos , Camundongos Knockout , Potássio/sangue , Equilíbrio Hidroeletrolítico
5.
Am J Physiol Renal Physiol ; 300(6): F1319-26, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21454249

RESUMO

Increased flow in the distal nephron induces K secretion through the large-conductance, calcium-activated K channel (BK), which is primarily expressed in intercalated cells (IC). Since flow also increases ATP release from IC, we hypothesized that purinergic signaling has a role in shear stress (τ; 10 dynes/cm(2)) -induced, BK-dependent, K efflux. We found that 10 µM ATP led to increased IC Ca concentration, which was significantly reduced in the presence of the P(2) receptor blocker suramin or calcium-free buffer. ATP also produced BK-dependent K efflux, and IC volume decrease. Suramin inhibited τ-induced K efflux, suggesting that K efflux is at least partially dependent on purinergic signaling. BK-ß4 small interfering (si) RNA, but not nontarget siRNA, decreased ATP secretion and both ATP-dependent and τ-induced K efflux. Similarly, carbenoxolone (25 µM), which blocks connexins, putative ATP pathways, blocked τ-induced K efflux and ATP secretion. Compared with BK-ß4(-/-) mice, wild-type mice with high distal flows exhibited significantly more urinary ATP excretion. These data demonstrate coupled electrochemical efflux between K and ATP as part of the mechanism for τ-induced ATP release in IC.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Néfrons/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Potássio/metabolismo , Animais , Western Blotting , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Canais de Potássio Cálcio-Ativados/genética , RNA Interferente Pequeno , Estatísticas não Paramétricas
6.
Kidney Int ; 76(9): 968-76, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19710627

RESUMO

Patients with Alport's syndrome develop a number of pro-inflammatory cytokine and matrix metalloproteinase (MMP) abnormalities that contribute to progressive renal failure. Changes in the composition and structure of the glomerular basement membranes likely alter the biomechanics of cell adhesion and signaling in these patients. To test if enhanced strain on the capillary tuft due to these structural changes contributes to altered gene regulation, we subjected cultured podocytes to cyclic biomechanical strain. There was robust induction of interleukin (IL)-6, along with MMP-3, -9, -10, and -14, but not MMP-2 or -12 by increased strain. Neutralizing antibodies against IL-6 attenuated the strain-mediated induction of MMP-3 and -10. Alport mice treated with a general inhibitor of nitric oxide synthase (L-NAME) developed significant hypertension and increased IL-6 and MMP-3 and -10 in their glomeruli relative to those of normotensive Alport mice. These hypertensive Alport mice also had elevated proteinuria along with more advanced histological and ultrastructural glomerular basement membrane damage. We suggest that MMP and cytokine dysregulation may constitute a maladaptive response to biomechanical strain in the podocytes of Alport patients, thus contributing to glomerular disease initiation and progression.


Assuntos
Membrana Basal Glomerular/metabolismo , Interleucina-6/genética , Glomérulos Renais/metabolismo , Metaloproteinases da Matriz/genética , Nefrite Hereditária/genética , Podócitos/metabolismo , Adaptação Fisiológica/genética , Animais , Pressão Sanguínea , Células Cultivadas , Citoesqueleto/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/fisiopatologia , Interleucina-6/metabolismo , Glomérulos Renais/fisiopatologia , Metaloproteinase 10 da Matriz/genética , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster , Nefrite Hereditária/metabolismo , Nefrite Hereditária/fisiopatologia , Proteinúria/induzido quimicamente , Proteinúria/genética , Proteinúria/fisiopatologia , RNA Mensageiro/metabolismo , Cloreto de Sódio na Dieta , Estresse Mecânico , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA