Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 11(8): 3552-3564, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664847

RESUMO

Rationale: The clinical use of PI3K inhibitors, such as buparlisib, has been plagued with toxicity at effective doses. The aim of this study is to determine if vitamin C, a potent epigenetic regulator, can improve the therapeutic outcome and reduce the dose of buparlisib in treating PIK3CA-mutated triple negative breast cancer (TNBC). Methods: The response of TNBC cells to buparlisib was assessed by EC50 measurements, apoptosis assay, clonogenic assay, and xenograft assay in mice. Molecular approaches including Western blot, immunofluorescence, RNA sequencing, and gene silencing were utilized as experimental tools. Results: Treatment with buparlisib at lower doses, along with vitamin C, induced apoptosis and inhibited the growth of TNBC cells in vitro. Vitamin C via oral delivery rendered a sub-therapeutic dose of buparlisib able to inhibit TNBC xenograft growth and to markedly block metastasis in mice. We discovered that buparlisib and vitamin C coordinately reduced histone H3K4 methylation by enhancing the nuclear translocation of demethylase, KDM5, and by serving as a cofactor to promote KDM5-mediated H3K4 demethylation. The expression of genes in the PI3K pathway, such as AKT2 and mTOR, was suppressed by vitamin C in a KDM5-dependent manner. Vitamin C and buparlisib cooperatively blocked AKT phosphorylation. Inhibition of KDM5 largely abolished the effect of vitamin C on the response of TNBC cells to buparlisib. Additionally, vitamin C and buparlisib co-treatment changed the expression of genes, including PCNA and FILIP1L, which are critical to cancer growth and metastasis. Conclusion: Vitamin C can be used to reduce the dosage of buparlisib needed to produce a therapeutic effect, which could potentially ease the dose-dependent side effects in patients.


Assuntos
Ácido Ascórbico/administração & dosagem , Inibidores de Fosfoinositídeo-3 Quinase/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Aminopiridinas/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Código das Histonas/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia de Alvo Molecular , Morfolinas/administração & dosagem , Medicina de Precisão , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Transl Vis Sci Technol ; 9(11): 1, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33101779

RESUMO

Purpose: To evaluate the long-term effects of mitochondrial gene transfer of mutant human NADH ubiquinone oxidoreductase subunit VI (hND6T14484C) in the mouse eye. Methods: Adult mice were injected intravitreally with mitochondrial-targeted adeno-associated virus carrying either hND6T14484C or mitochondrial encoded mCherry. The delivery and expression of the interest gene were detected by polymerase chain reaction (PCR), quantitative PCR (qPCR), and immunostaining. The pathologic effects of the mutant gene in live mice were assessed with RNA-seq, serial spectral domain optical coherence tomography (SD-OCT), and pattern electroretinogram (PERG). Results: Delivered hND6 was found 30-fold greater than endogenous mouse ND6 in microdissected retinal ganglion cells of hND6-injected mice. Compared to controls injected with mCherry, PERG amplitude of hND6 mice dropped significantly at 3 (P = 0.0023), 6 (P = 0.0058), and 15 (P = 0.031) months after injection. SD-OCT revealed swelling of the optic nerve head followed by the progressive retinal and optic nerve atrophy in hND6 mice. Furthermore, RNA-seq data showed a change in 381 transcripts' expression in these mice compared to mCherry mice. Postmortem analysis showed hND6 mice had marked atrophy of the entire optic nerve, from the globe to the optic chiasm, and a significant loss of retinal ganglion cells compared to age-matched control mice (P = 1.7E-9). Conclusions: Delivered hND6T14484C induces visual loss and optic neuropathy in mice, the hallmarks of human Leber's hereditary optic neuropathy (LHON). Translational Relevance: Results from this study will help establish a novel strategy not only to generate an LHON animal model but also to provide a potential to treat this or any other mitochondrial diseases.


Assuntos
DNA Mitocondrial , Atrofia Óptica Hereditária de Leber , Animais , Eletrorretinografia , Humanos , Camundongos , Atrofia Óptica Hereditária de Leber/genética , Nervo Óptico/diagnóstico por imagem , Células Ganglionares da Retina
3.
Life Sci Alliance ; 3(1)2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31882444

RESUMO

Epigenetic variation reflects the impact of a dynamic environment on chromatin. However, it remains elusive how environmental factors influence epigenetic events. Here, we show that G protein-coupled receptors (GPCRs) alter H3K4 methylation via oscillatory intracellular cAMP. Activation of Gs-coupled receptors caused a rapid decrease of H3K4me3 by elevating cAMP, whereas stimulation of Gi-coupled receptors increased H3K4me3 by diminishing cAMP. H3K4me3 gradually recovered towards baseline levels after the removal of GPCR ligands, indicating that H3K4me3 oscillates in tandem with GPCR activation. cAMP increased intracellular labile Fe(II), the cofactor for histone demethylases, through a non-canonical cAMP target-Rap guanine nucleotide exchange factor-2 (RapGEF2), which subsequently enhanced endosome acidification and Fe(II) release from the endosome via vacuolar H+-ATPase assembly. Removing Fe(III) from the media blocked intracellular Fe(II) elevation after stimulation of Gs-coupled receptors. Iron chelators and inhibition of KDM5 demethylases abolished cAMP-mediated H3K4me3 demethylation. Taken together, these results suggest a novel function of cAMP signaling in modulating histone demethylation through labile Fe(II).


Assuntos
AMP Cíclico/análogos & derivados , Desmetilação/efeitos dos fármacos , Compostos Ferrosos/metabolismo , Histonas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tionucleotídeos/metabolismo , Animais , Células Cultivadas , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Inativação Gênica , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Ligantes , Metilação/efeitos dos fármacos , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/genética , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Células de Schwann , Tionucleotídeos/farmacologia , Transfecção
4.
EBioMedicine ; 43: 201-210, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30975544

RESUMO

BACKGROUND: Bromodomain and extra-terminal inhibitors (BETi) have shown efficacy for the treatment of aggressive triple negative breast cancer (TNBC). However, BETi are plagued by a narrow therapeutic window as manifested by severe toxicities at effective doses. Therefore, it is a limitation to their clinical implementation in patient care. METHODS: The impact of vitamin C on the efficacy of small compounds including BETi was assessed by high-throughput screening. Co-treatment of TNBC by BETi especially JQ1 and vitamin C was evaluated in vitro and in vivo. FINDINGS: High-throughput screening revealed that vitamin C improves the efficacy of a number of structurally-unrelated BETi including JQ1, I-BET762, I-BET151, and CPI-203 in treating TNBC cells. The synergy between BETi and vitamin C is due to suppressed histone acetylation (H3ac and H4ac), which is in turn caused by upregulated histone deacetylase 1 (HDAC1) expression upon vitamin C addition. Treatment with JQ1 at lower doses together with vitamin C induces apoptosis and inhibits the clonogenic ability of cultured TNBC cells. Oral vitamin C supplementation renders a sub-therapeutic dose of JQ1 able to inhibit human TNBC xenograft growth and metastasis in mice. INTERPRETATION: Vitamin C expands the therapeutic window of BETi by sensitizing TNBC to BETi. Using vitamin C as a co-treatment, lower doses of BETi could be used to achieve an increased therapeutic index in patients, which will translate to a reduced side effect profile. FUND: University of Miami Sylvester Comprehensive Cancer Center, Bankhead Coley Cancer Research program (7BC10), Flight Attendant Medical Research Institute, and NIH R21CA191668 (to GW) and 1R56AG061911 (to CW and CHV).


Assuntos
Antineoplásicos/farmacologia , Ácido Ascórbico/administração & dosagem , Suplementos Nutricionais , Proteínas/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/metabolismo , Acetilação , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Azepinas/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Perfilação da Expressão Gênica , Inativação Gênica , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Humanos , Camundongos , Triazóis/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Invest Ophthalmol Vis Sci ; 59(8): 3608-3618, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-30025088

RESUMO

Purpose: To investigate the impact of ascorbate, via DNA hydroxymethylation, on VEGF expression in retinal pigment epithelial (RPE) cells. Methods: Dot-blot and hydroxymethylated DNA immunoprecipitation sequencing were applied to evaluate the impact of ascorbate on DNA hydroxymethylation in ARPE-19 cells. RNA sequencing (RNA-seq) was carried out to analyze the transcriptome. Quantitative RT-PCR and ELISA were conducted to examine the transcription and secretion of VEGF from cultured cells. Primary human fetal RPE cells and RPE-J cells were used to verify the effect of ascorbate on VEGF expression. ELISA was used to measure VEGF in the vitreous humor of Gulo-/- mice, which, like humans, cannot synthesize ascorbate de novo. Results: Treatment with ascorbate (50 µM) promoted 5-hydroxymethycytosine (5hmC) generation and changed the genome-wide profiles of 5hmC in ARPE-19 cells. Ascorbate also caused a dramatic shift in the transcriptome-3186 differential transcripts, of which 69.3% are correlated with altered 5hmC in promoters or gene bodies. One of the most downregulated genes was VEGFA, which encodes the VEGF protein. The suppression of VEGF by ascorbate is independent of hypoxia-inducible factor 1-alpha (HIF-1α) but correlates with increased 5hmC in the gene body. The decreased transcription and secretion of VEGF by ascorbate were verified in primary human fetal RPE cells. Furthermore, adding ascorbate in the diet for Gulo-/- mice resulted in decreased levels of VEGF in the RPE/choroid and vitreous humor. Conclusions: Ascorbate inhibits VEGF expression in RPE cells likely via DNA hydroxymethylation. Thus, ascorbate could be implicated in the prevention or treatment of diseases such as age-related macular degeneration (AMD).


Assuntos
Ácido Ascórbico/farmacologia , DNA/genética , Regulação da Expressão Gênica , Degeneração Macular/genética , Epitélio Pigmentado da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Sobrevivência Celular , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Humanos , Immunoblotting , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Epitélio Pigmentado da Retina/patologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos
6.
Sci Rep ; 8(1): 5306, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593282

RESUMO

Genomic loss of 5-hydroxymethylcytosine (5hmC) accompanies malignant cellular transformation in breast cancer. Vitamin C serves as a cofactor for TET methylcytosine dioxygenases to increase 5hmC generation. Here we show that the transcription of SVCT2, a major vitamin C transporter, was decreased in human breast cancers (113 cases) compared to normal breast tissues from the same patients. A decreased SVCT2 expression was also observed in breast cancer cell lines. Treatment with vitamin C (100 µM) increased the 5hmC content in MDA-MB-231 breast cancer cells and markedly altered the transcriptome. The vitamin C treatment induced apoptosis in MDA-MB-231 cells, which was verified in two additional breast cancer cell lines. This pro-apoptotic effect of vitamin C appeared to be mediated by TRAIL, a known apoptosis inducer. Vitamin C upregulated TRAIL transcripts (2.3-fold increase) and increased TRAIL protein levels. The upregulation of TRAIL by vitamin C was largely abolished by siRNAs targeting TETs and anti-TRAIL antibody abrogated the induction of apoptosis. Furthermore, the apoptosis promoted by vitamin C was associated with Bax and caspases activation, Bcl-xL sequestration, and cytochrome c release. Taken together, these results suggest a potential role of physiological doses of vitamin C in breast cancer prevention and treatment.


Assuntos
Ácido Ascórbico/farmacologia , Neoplasias da Mama/patologia , Ligante Indutor de Apoptose Relacionado a TNF/efeitos dos fármacos , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Apoptose/efeitos dos fármacos , Ácido Ascórbico/metabolismo , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Transportadores de Sódio Acoplados à Vitamina C/genética , Transportadores de Sódio Acoplados à Vitamina C/metabolismo
7.
Cancer Res ; 78(2): 572-583, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29180474

RESUMO

Bromodomain and extraterminal inhibitors (BETi) are promising cancer therapies, yet prominent side effects of BETi at effective doses have been reported in phase I clinical trials. Here, we screened a panel of small molecules targeting epigenetic modulators against human metastatic melanoma cells. Cells were pretreated with or without ascorbate (vitamin C), which promotes DNA demethylation and subsequently changes the sensitivity to drugs. Top hits were structurally unrelated BETi, including JQ1, I-BET151, CPI-203, and BI-2536. Ascorbate enhanced the efficacy of BETi by decreasing acetylation of histone H4, but not H3, while exerting no effect on the expression of BRD proteins. Histone acetyltransferase 1 (HAT1), which catalyzes H4K5ac and H4K12ac, was downregulated by ascorbate mainly via the TET-mediated DNA hydroxymethylation pathway. Loss of H4ac, especially H4K5ac and H4K12ac, disrupted the interaction between BRD4 and H4 by which ascorbate and BETi blocked the binding of BRD4 to acetylated histones. Cotreatment with ascorbate and JQ1 induced apoptosis and inhibited proliferation of cultured melanoma cells. Ascorbate deficiency as modeled in Gulo-/- mice diminished the treatment outcome of JQ1 for melanoma tumorgraft. In contrast, ascorbate supplementation lowered the effective dose of JQ1 needed to successfully inhibit melanoma tumors in mice. On the basis of our findings, future clinical trials with BETi should consider ascorbate levels in patients. Furthermore, ascorbate supplementation might help reduce the severe side effects that arise from BETi therapy by reducing the dosage necessary for treatment.Significance: This study shows that ascorbate can enhance the efficacy of BET inhibitors, providing a possible clinical solution to challenges arising in phase I trials from the dose-dependent side effects of this class of epigenetic therapy. Cancer Res; 78(2); 572-83. ©2017 AACR.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Azepinas/farmacologia , Sinergismo Farmacológico , Melanoma/tratamento farmacológico , Proteínas/antagonistas & inibidores , Triazóis/farmacologia , Acetilação , Animais , Biomarcadores Tumorais/metabolismo , Proliferação de Células/efeitos dos fármacos , Combinação de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Humanos , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Domínios Proteicos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Elife ; 62017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29239726

RESUMO

It is widely accepted that cAMP regulates gene transcription principally by activating the protein kinase A (PKA)-targeted transcription factors. Here, we show that cAMP enhances the generation of 5-hydroxymethylcytosine (5hmC) in multiple cell types. 5hmC is converted from 5-methylcytosine (5mC) by Tet methylcytosine dioxygenases, for which Fe(II) is an essential cofactor. The promotion of 5hmC was mediated by a prompt increase of the intracellular labile Fe(II) pool (LIP). cAMP enhanced the acidification of endosomes for Fe(II) release to the LIP likely through RapGEF2. The effect of cAMP on Fe(II) and 5hmC was confirmed by adenylate cyclase activators, phosphodiesterase inhibitors, and most notably by stimulation of G protein-coupled receptors (GPCR). The transcriptomic changes caused by cAMP occurred in concert with 5hmC elevation in differentially transcribed genes. Collectively, these data show a previously unrecognized regulation of gene transcription by GPCR-cAMP signaling through augmentation of the intracellular labile Fe(II) pool and DNA hydroxymethylation.


Assuntos
5-Metilcitosina/análogos & derivados , AMP Cíclico/metabolismo , DNA/metabolismo , Ferro/metabolismo , Metilação , Transdução de Sinais , 5-Metilcitosina/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica , Ratos , Células de Schwann/metabolismo
9.
Invest Ophthalmol Vis Sci ; 58(6): BIO240-BIO246, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28820917

RESUMO

Purpose: To identify genomic mutations in lacrimal gland adenoid cystic carcinoma (LGACC) samples from patients. Methods: Genomic DNA was extracted from LGACC specimens. Whole exome sequencing (exome-seq) was conducted to screen for mutations. Capillary sequencing was performed to verify mutations in genes shared by multiple samples. Luciferase assays were used to evaluate functional consequences of NOTCH1 mutations. Results: The mutation profile of LGACC was complicated. The most frequently mutated gene observed (28.6%) was bromodomain PHD finger transcription factor (BPTF). No mutation was identified in common cancer genes such as TP53, KRAS, and BRAF. However, mutations predicted to be functionally severe were accumulated in the Notch signaling pathway including NOTCH1 and NOTCH2, of which mutations have been reported in head/neck adenoid cystic carcinoma (ACC). Of 14 LGACC samples, five samples carry mutations in Notch pathway genes. Capillary sequencing verified all the mutations in the two NOTCH genes identified by exome-seq. Compared to the wild-type NOTCH1, three frame shifting mutations and two missense mutations (C387W and L1600Q) increased luciferase activity approximately 10- to 25-fold. Conclusions: Major genomic mutation profiles in LGACC were uncovered by exome-seq. Although preliminary in nature, the Notch pathway could be a potential therapeutic target for LGACC.


Assuntos
Carcinoma Adenoide Cístico/genética , Exoma/genética , Neoplasias Oculares/genética , Genes Neoplásicos/genética , Doenças do Aparelho Lacrimal/genética , Receptor Notch1/genética , Receptor Notch2/genética , Western Blotting , DNA de Neoplasias/genética , Mutação da Fase de Leitura , Genes Reporter , Humanos , Mutação de Sentido Incorreto , Plasmídeos , Análise de Sequência de DNA
10.
Sci Rep ; 7(1): 3671, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623268

RESUMO

Pharmacological levels of ascorbate have long been suggested as a potential treatment of cancer. However, we observed that EC50 of ascorbate was at a similar level for cultured healthy melanocytes and melanoma cells, suggesting a limit of pharmacological ascorbate in treating cancer. Loss of 5-hydroxymethylcytosine (5 hmC) is an epigenetic hallmark of cancer and ascorbate promotes 5 hmC generation by serving as a cofactor for TET methylcytosine dioxygenases. Our previous work demonstrated that ascorbate treatment at physiological level (100 µM) increased 5 hmC content in melanoma cells toward the level of healthy melanocytes. Here we show that 100 µM of ascorbate induced apoptosis in A2058 melanoma cells. RNA-seq analysis revealed that expression of the Clusterin (CLU) gene, which is related to apoptosis, was downregulated by ascorbate. The suppression of CLU was verified at transcript level in different melanoma cell lines, and at protein level in A2058 cells. The anti-apoptotic cytoplasmic CLU was decreased, while the pro-apoptotic nuclear CLU was largely maintained, after ascorbate treatment. These changes in CLU subcellular localization were also associated with Bax and caspases activation, Bcl-xL sequestration, and cytochrome c release. Taken together, this study establishes an impending therapeutic role of physiological ascorbate to potentiate apoptosis in melanoma.


Assuntos
Apoptose/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Clusterina/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Perfilação da Expressão Gênica/métodos , Humanos , Melanoma/genética , Transcriptoma , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
11.
Horm Metab Res ; 49(8): 625-630, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28514806

RESUMO

Epicardial adipose tissue (EAT) is an easily measurable visceral fat of the heart with unique anatomy, functionality, and transcriptome. EAT can serve as a therapeutic target for pharmaceutical agents targeting the fat. Glucagon-like peptide-1 (GLP-1) and GLP-2 analogues are newer drugs showing beneficial cardiovascular and metabolic effects. Whether EAT expresses GLP- 1 and 2 receptors (GLP-1R and GLP-2R) is unknown. RNA-seq analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to evaluate the presence of GLP-1R and GLP-2R in EAT and subcutaneous fat (SAT) obtained from 8 subjects with coronary artery disease and type 2 diabetes mellitus undergoing elective cardiac surgery. Immunofluorescence was also performed on EAT and SAT samples using Mab3f52 against GLP-1R. Our RNA-sequencing (RNA-seq) analysis showed that EAT expresses both GLP-1R and GLP-2R genes. qRT-PCR analysis confirmed that GLP-1R expression was low but detected by 2 different sets of intron-spanning primers. GLP-2R expression was detected in all patients and was found to be 5-fold higher than GLP-1R. The combination of accurately spliced reads from RNA-seq and successful amplification using intron-spanning primers indicates that both GLP-1R and GLP-2R are expressed in EAT. Immunofluorescence clearly showed that GLP-1R is present and more abundant in EAT than SAT. This is the first time that human EAT is found to express both GLP-1R and GLP-2R genes. Pharmacologically targeting EAT may induce beneficial cardiovascular and metabolic effects.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Receptor do Peptídeo Semelhante ao Glucagon 1/biossíntese , Receptor do Peptídeo Semelhante ao Glucagon 2/biossíntese , Pericárdio/metabolismo , Tecido Adiposo/patologia , Diabetes Mellitus Tipo 2/patologia , Feminino , Humanos , Masculino , Pericárdio/patologia
12.
J Med Genet ; 52(4): 256-61, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25612910

RESUMO

BACKGROUND: Tibial pseudarthrosis is associated with neurofibromatosis type 1 (NF1) and there is wide clinical variability of the tibial dysplasia in NF1, suggesting the possibility of genetic modifiers. Double inactivation of NF1 is postulated to be necessary for the development of tibial pseudarthrosis, but tissue or cell of origin of the 'second hit' mutation remains unclear. METHODS: Exome sequencing of different sections of surgically resected NF1 tibial pseudarthrosis tissue was performed and compared to germline (peripheral blood). RESULTS: A germline NF1 splice site mutation (c.61-2A>T, p.L21 M68del) was identified from DNA extracted from peripheral blood. Exome sequencing of DNA extracted from tissue removed during surgery of the tibial pseudarthrosis showed a somatic mutation of NF1 (c.3574G>T, p.E1192*) in the normal germline allele. Further analysis of different regions of the tibial pseudarthrosis sample showed enrichment of the somatic mutation in the soft tissue within the pseudarthrosis site and absence of the somatic mutation in cortical bone. In addition, a germline variant in PTPN11 (c.1658C>T, p.T553M), a gene involved in the RAS signal transduction pathway was identified, although the clinical significance is unknown. CONCLUSIONS: Given that the NF1 somatic mutation was primarily detected in the proliferative soft tissue at the pseudarthrosis site, it is likely that the second hit occurred in mesenchymal progenitors from the periosteum. These results are consistent with a defect of differentiation, which may explain why the mutation is found in proliferative cells and not within cortical bone tissue, as the latter by definition contains mostly mature differentiated osteoblasts and osteocytes.


Assuntos
Genes da Neurofibromatose 1 , Mutação , Neurofibromatose 1/genética , Pseudoartrose/genética , Tíbia/patologia , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Radiografia , Tíbia/diagnóstico por imagem
13.
J Bone Miner Res ; 29(12): 2636-42, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24932921

RESUMO

Neurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by mutations in NF1. Among the earliest manifestations is tibial pseudoarthrosis and persistent nonunion after fracture. To further understand the pathogenesis of pseudoarthrosis and the underlying bone remodeling defect, pseudoarthrosis tissue and cells cultured from surgically resected pseudoarthrosis tissue from NF1 individuals were analyzed using whole-exome and whole-transcriptome sequencing as well as genomewide microarray analysis. Genomewide analysis identified multiple genetic mechanisms resulting in somatic biallelic NF1 inactivation; no other genes with recurring somatic mutations were identified. Gene expression profiling identified dysregulated pathways associated with neurofibromin deficiency, including phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways. Unlike aggressive NF1-associated malignancies, tibial pseudoarthrosis tissue does not harbor a high frequency of somatic mutations in oncogenes or other tumor-suppressor genes, such as p53. However, gene expression profiling indicates that pseudoarthrosis tissue has a tumor-promoting transcriptional pattern, despite lacking tumorigenic somatic mutations. Significant overexpression of specific cancer-associated genes in pseudoarthrosis highlights a potential for receptor tyrosine kinase inhibitors to target neurofibromin-deficient pseudoarthrosis and promote proper bone remodeling and fracture healing.


Assuntos
Regulação da Expressão Gênica , Neurofibromatose 1 , Neurofibromina 1/deficiência , Pseudoartrose , Fraturas da Tíbia , Transcrição Gênica , Adolescente , Remodelação Óssea/genética , Pré-Escolar , Feminino , Consolidação da Fratura/genética , Perfilação da Expressão Gênica , Humanos , Lactente , Sistema de Sinalização das MAP Quinases/genética , Masculino , Neurofibromatose 1/genética , Neurofibromatose 1/metabolismo , Neurofibromatose 1/patologia , Neurofibromatose 1/terapia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Pseudoartrose/genética , Pseudoartrose/metabolismo , Pseudoartrose/patologia , Pseudoartrose/terapia , Fraturas da Tíbia/genética , Fraturas da Tíbia/metabolismo , Fraturas da Tíbia/patologia , Fraturas da Tíbia/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA