Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomater Appl ; 37(4): 724-736, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35649287

RESUMO

Proper pain management is well understood to be one of the fundamental aspects of a healthy postoperative recovery in conjunction with mobility and nutrition. Approximately, 10% of patients prescribed opioids after surgery continue to use opioids in the long-term and as little as 10 days on opioids can result in addiction. In an effort to provide physicians with an alternative pain management technique, this work evaluates the material properties of a novel local anesthetic delivery system designed for controlled release of bupivacaine for 72 hours. The formulation utilizes solid-lipid microparticles that encapsulate the hydrophobic molecule bupivacaine in its free-base form. The lipid microparticles are suspended in a non-crosslinked hyaluronic acid hydrogel, which acts as the microparticle carrier. Two different particle manufacturing techniques, milling and hot homogenization, were evaluated in this work. The hot homogenized particles had a slower and more controlled release than the milled particles. Rheological techniques revealed that the suspension remains a viscoelastic fluid when loaded with either particle type up to 25% (w/v) particles densities. Furthermore, the shear thinning properties of the suspension media, hyaluronic acid hydrogel, were conserved when bupivacaine-loaded solid-lipid microparticles were loaded up to densities of 25% (w/v) particle loading. The force during injection was measured for suspension formulations with varying hyaluronic acid hydrogel concentrations, particle densities, particle types and particle sizes. The results indicate that the formulation viscosity is highly dependent on particle density, but hyaluronic acid hydrogel is required for lowering injection forces as well as minimizing clogging events.


Assuntos
Anestésicos Locais , Ácido Hialurônico , Bupivacaína/química , Preparações de Ação Retardada/química , Humanos , Ácido Hialurônico/química , Hidrogéis , Lipídeos , Microesferas , Tamanho da Partícula , Viscosidade
2.
Sci Rep ; 12(1): 6146, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414673

RESUMO

Nanoscale and microscale cell-derived extracellular vesicle types and subtypes are of significant interest to researchers in biology and medicine. Extracellular vesicles (EVs) have diagnostic and therapeutic potential in terms of biomarker and nanomedicine applications. To enable such applications, EVs must be isolated from biological fluids or separated from other EV types. Developing methods to fractionate EVs is of great importance to EV researchers. Our goal was to begin to develop a device that would separate medium EVs (mEVs, traditionally termed microvesicles or shedding vesicles) and small EVs (sEVs, traditionally termed exosomes) by elasto-inertial effect. We sought to develop a miniaturized technology that works similar to and provides the benefits of differential ultracentrifugation but is more suitable for EV-based microfluidic applications. The aim of this study was to determine whether we could use elasto-inertial focusing to re-isolate and recover U87 mEVs and sEVs from a mixture of mEVs and sEVs isolated initially by one round of differential ultracentrifugation. The studied spiral channel device can continuously process 5 ml of sample fluid per hour. Using the channel, sEVs and mEVs were recovered and re-isolated from a mixture of U87 glioma cell-derived mEVs and sEVs pre-isolated by one round of differential ultracentrifugation. Following two passes through the spiral channel, approximately 55% of sEVs were recovered with 6% contamination by mEVs (the recovered sEVs contained 6% of the total mEVs). In contrast, recovery of U87 mEVs and sEVs re-isolated using a typical second centrifugation wash step was only 8% and 53%, respectively. The spiral channel also performed similar to differential ultracentrifugation in reisolating sEVs while significantly improving mEV reisolation from a mixture of U87 sEVs and mEVs. Ultimately this technology can also be coupled to other microfluidic EV isolation methods in series and/or parallel to improve isolation and minimize loss of EV subtypes.


Assuntos
Exossomos , Vesículas Extracelulares , Glioblastoma , Centrifugação , Meios de Cultura , Humanos , Ultracentrifugação
3.
Anal Chem ; 93(5): 2888-2897, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33476126

RESUMO

In this work, a new high-volume, continuous particle separation device that separates based upon size and charge is described. Two continuous flow-electrical-split-flow lateral transport thin (Fl-El-SPLITT) device architectures (a platinum electrode on a porous membrane and a porous graphite electrode under a membrane) were developed and shown to improve particle separations over a purely electrical-SPLITT device. The graphite FL-El-SPLITT device architecture achieved the best separation of approximately 60% of small (28 nm) vs large (1000 nm) polystyrene particles. Fl-El-SPLITT (platinum) achieved a 75% separation on a single pass using these same particles. Fl-El-SPLITT (platinum) achieved a moderate 26% continuous separation of U87 glioma cell-derived small extracellular vesicles (EVs) from medium EVs. Control parameter testing showed that El-SPLITT continuously directed particle motility within a channel to exit a selected port based upon the applied voltage using either direct current or alternating current. The transition from one port to the other was dependent upon the voltage applied. Both large and small polystyrene particles transitioned together rather than separating at each of the applied voltages. These data present the first ever validation of El-SPLITT in continuous versus batch format. The Fl-El-SPLITT device architecture, monitoring, and electrical and fluid interfacing systems are described in detail for the first time. Capabilities afforded to the system by the flow addition include enhanced particle separation as well as the ability to filter out small particles or desalinate fluids. High-throughput continuous separations based upon electrophoretic mobility will be streamlined by this new technique that combines electrical and flow fields into a single device.


Assuntos
Fracionamento Químico , Eletricidade , Tamanho da Partícula , Fenômenos Físicos
4.
Anal Chem ; 92(14): 9866-9876, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32571024

RESUMO

Although many properties for small extracellular vesicles (sEVs, formerly termed "exosomes") isolated at ∼100 000g are known, a wide range of values are reported for their electrophoretic mobility (EM) measurements. This paper reports for the first time the effect of dilution on the EM of U87 glioblastoma cell-derived and plasma-derived sEVs and medium size EVs (mEVs, commonly termed "oncosomes") preisolated by differential centrifugation. Furthermore, the effect of resalting on the EM of sEVs and mEVs was evaluated. The EM of U87 sEVs and U87 mEVs showed an increase as the salt concentration decreased to 0.005% of the initial salt concentration. However, for the plasma sEVs and plasma mEVs, the electrophoretic mobility increased as the salt concentration decreased to 0.01% of the initial salt concentration and then increased to its initial value when the salt concentration decreased to 0.005% of the initial salt concentration. For both U87 and plasma sEVs and mEVs, the EM remained almost constant when the concentration of the particles changed and the salt concentration was kept the same as its initial value. This indicates that the EM of EVs is only a function of the salt concentration of the buffer and is independent of the concentration of the particles. The sEVs and mEVs were separated with cyclical ElFFF for the first time. The results indicate that ElFFF was able to fractionate the EVs, and a crescent-shaped trend was found for the retention time when the applied AC voltage was altered (increased).


Assuntos
Centrifugação/métodos , Fracionamento Químico/métodos , Técnicas Eletroquímicas , Vesículas Extracelulares/química , Glioblastoma/química , Linhagem Celular Tumoral , Humanos
5.
Anal Chem ; 90(21): 12783-12790, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30346136

RESUMO

The influence of buffer substitution and dilution effects on exosome size and electrophoretic mobility were shown for the first time. Cyclical electrical field flow fractionation (Cy-El-FFF) in various substituted fluids was applied to exosomes and other particles. Tested carrier fluids of deionized (DI) water, 1× phosphate buffered saline (PBS), 0.308 M trehalose, and 2% isopropyl alcohol (IPA) influenced Cy-El-FFF-mediated isolation of A375 melanoma exosomes. All fractograms revealed a crescent-shaped trend in retention times with increasing voltage with the maximum retention time at ∼1.3 V AC. A375 melanoma exosome recovery was approximately 70-80% after each buffer substitution, and recovery was independent of whether the sample was substituted into 1× PBS or DI water. Exosome dilution in deionized water produced a U-shaped dependence on electrophoretic mobility. The effect of dilution using 1× PBS buffer revealed a very gradual change in electrophoretic mobility of exosomes from ∼-1.6 to -0.1 µm cm/s V, as exosome concentration was decreased. This differed from the use of DI water, where a large change from ∼-5.5 to -0.1 µm cm/s V over the same dilution range was observed. Fractograms of separated A375 melanoma exosomes in two substituted low-ionic-strength buffers were compared with synthetic particle fractograms. Overall, the ability of Cy-El-FFF to separate exosomes based on their size and charge is a highly promising, label-free approach to initially catalogue and purify exosome subtypes for biobanking as well as to enable further exosome subtype interrogations.


Assuntos
Exossomos/química , Solventes/química , 2-Propanol/química , Soluções Tampão , Linhagem Celular Tumoral , Fracionamento por Campo e Fluxo/métodos , Humanos , Nanopartículas/química , Concentração Osmolar , Fosfatos/química , Poliestirenos/química , Solução Salina/química , Trealose/química , Água/química
6.
Cardiovasc Eng Technol ; 8(1): 91-95, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28168675

RESUMO

This paper presents the latest in vivo findings of a novel vascular coupling system. Vascular anastomosis is a common procedure in reconstructive surgeries and traditional hand suturing is very time consuming. The vascular coupling system described herein was designed to be used on arteries for a rapid and error-free anastomosis. The system consists of an engaging ring made from high density polyethylene using computer numerical control machining and a back ring made from polymethylmethacrylate using laser cutting. The vascular coupling system and its corresponding installation tools were tested in a pilot animal study to evaluate their efficacy in completing arterial anastomosis. A segment of expanded polytetrafluoroethylene (ePTFE) tubing was interposed into a transected carotid artery by anastomosis using two couplers in a pig. Two end-to-end anastomoses were accomplished. Ultrasound images were obtained to evaluate the blood flow at the anastomotic site immediately after the surgery. MRI was also performed 2 weeks after the surgery to evaluate vessel and ePTFE graft patency. This anastomotic system demonstrated high efficacy and easy usability, which should facilitate vascular anastomosis procedures in trauma and reconstructive surgeries.


Assuntos
Anastomose Cirúrgica/instrumentação , Anastomose Cirúrgica/métodos , Artérias Carótidas/cirurgia , Animais , Artérias Carótidas/diagnóstico por imagem , Desenho de Equipamento , Oclusão de Enxerto Vascular/cirurgia , Imageamento por Ressonância Magnética , Suínos , Túnica Íntima/cirurgia
7.
Sci Rep ; 6: 21422, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26888011

RESUMO

Successful development of siRNA therapies has significant potential for the treatment of skin conditions (alopecia, allergic skin diseases, hyperpigmentation, psoriasis, skin cancer, pachyonychia congenital) caused by aberrant gene expression. Although hypodermic needles can be used to effectively deliver siRNA through the stratum corneum, the major challenge is that this approach is painful and the effects are restricted to the injection site. Microneedle arrays may represent a better way to deliver siRNAs across the stratum corneum. In this study, we evaluated for the first time the ability of the solid silicon microneedle array for punching holes to deliver cholesterol-modified housekeeping gene (Gapdh) siRNA to the mouse ear skin. Treating the ear with microneedles showed permeation of siRNA in the skin and could reduce Gapdh gene expression up to 66% in the skin without accumulation in the major organs. The results showed that microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively.


Assuntos
Terapia Genética/instrumentação , Terapia Genética/métodos , RNA Interferente Pequeno/farmacologia , Pele , Animais , Feminino , Camundongos , Agulhas
8.
Methods Mol Biol ; 949: 305-34, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23329451

RESUMO

Diagnostic assays implemented in microfluidic devices have developed rapidly over the past decade and are expected to become commonplace in the next few years. Hundreds of microfluidics-based approaches towards clinical diagnostics and pathogen detection have been reported with a general theme of rapid and customizable assays that are potentially cost-effective. This chapter reviews microfluidics in molecular diagnostics based on application areas with a concise review of microfluidics in general. Basic principles of microfabrication are briefly reviewed and the transition to polymer fabricated devices is discussed. Most current microfluidic diagnostic devices are designed to target a single disease, such as a given cancer or a variety of pathogens, and there will likely be a large market for these focused devices; however, the future of molecular diagnostics lies in highly multiplexed microfluidic devices that can screen for potentially hundreds of diseases simultaneously.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Técnicas de Diagnóstico Molecular/métodos , Animais , Bactérias/isolamento & purificação , Biomarcadores Tumorais/análise , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas de Diagnóstico Molecular/instrumentação , Saúde Pública/estatística & dados numéricos , Vírus/isolamento & purificação
9.
Anal Chem ; 84(19): 8323-9, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22928609

RESUMO

Characterization of polymerized liposomes (PolyPIPosomes) was carried out using a combination of normal dc electrical field-flow fractionation and cyclical electrical field-flow fractionation (CyElFFF) as an analytical technique. The constant nature of the carrier fluid and channel configuration for this technique eliminates many variables associated with multidimensional analysis. CyElFFF uses an oscillating field to induce separation and is performed in the same channel as standard dc electrical field-flow fractionation separation. Theory and experimental methods to characterize nanoparticles in terms of their sizes and electrophoretic mobilities are discussed in this paper. Polystyrene nanoparticles are used for system calibration and characterization of the separation performance, whereas polymerized liposomes are used to demonstrate the applicability of the system to biomedical samples. This paper is also the first to report separation and a higher effective field when CyElFFF is operated at very low applied voltages. The technique is shown to have the ability to quantify both particle size and electrophoretic mobility distributions for colloidal polystyrene nanoparticles and PolyPIPosomes.


Assuntos
Campos Eletromagnéticos , Fracionamento por Campo e Fluxo , Lipossomos/análise , Lipossomos/síntese química , Tamanho da Partícula , Polimerização
10.
Artigo em Inglês | MEDLINE | ID: mdl-22795557

RESUMO

A diffusion Split-Flow Thin Cell (SPLITT) system was used to partially remove small peptides such as ß2 microglobulin (ß2M) and parathyroid hormone (PTH) in a continuous manner from an input flow stream while preserving most (over 97%) of the larger protein in the sample, such as albumin. To help determine the operating conditions for this work, a two-dimensional numerical model based on the Navier-Stokes equation and convection-diffusion equations was developed for diffusional SPLITT using COMSOL multiphysics software (COMSOL Inc., MA). These simulations were used to obtain the relationship between important operational parameters and the purification efficiency for proteins of interest. The diffusion-based SPLITT system was fabricated using xurography and was used to demonstrate protein purification based on the differences in size or diffusion coefficient of the sample. The results obtained from the experiments are compared with the mathematical model and show good agreement, while the variations between these results are discussed. The results show that significant portions of small peptides (>25%) can be removed while preserving larger proteins (up to 95%) in the carrier stream. A potential application of this technique is to be used as an additional step in kidney dialysis to remove toxins that are not effectively removed by current dialysis protocols.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Proteínas/isolamento & purificação , Simulação por Computador , Diálise/instrumentação , Diálise/métodos , Difusão , Modelos Teóricos , Peptídeos/isolamento & purificação
11.
Vision Res ; 50(7): 680-5, 2010 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19854210

RESUMO

Treatment of age-macular degeneration requires monthly intravitreal injections, which are costly and have serious risks. The objective of this study was to develop a novel intraocular implant for drug delivery. The capsule drug ring is a reservoir inserted in the lens capsule during cataract surgery, refillable and capable of delivering multiple drugs. Avastin was the drug of interest in this study. Prototypes were manufactured using polymethylmethacrylate sheets as the reservoir material, a semi-permeable membrane for controlled delivery and silicone check valves for refilling. The device showed near zero-order release kinetics and Avastin stability was investigated with accelerated temperature studies.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Implantes de Medicamento/normas , Degeneração Macular/tratamento farmacológico , Inibidores da Angiogênese/farmacocinética , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais Humanizados , Bevacizumab , Sistemas de Liberação de Medicamentos/instrumentação , Humanos , Teste de Materiais , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA