Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nat Biomed Eng ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698155

RESUMO

The adenovirus-mediated somatic transfer of the embryonic T-box transcription factor 18 (TBX18) gene can convert chamber cardiomyocytes into induced pacemaker cells. However, the translation of therapeutic TBX18-induced cardiac pacing faces safety challenges. Here we show that the myocardial expression of synthetic TBX18 mRNA in animals generates de novo pacing and limits innate and inflammatory immune responses. In rats, intramyocardially injected mRNA remained localized, whereas direct myocardial injection of an adenovirus carrying a reporter gene resulted in diffuse expression and in substantial spillover to the liver, spleen and lungs. Transient expression of TBX18 mRNA in rats led to de novo automaticity and pacemaker properties and, compared with the injection of adenovirus, to substantial reductions in the expression of inflammatory genes and in activated macrophage populations. In rodent and clinically relevant porcine models of complete heart block, intramyocardially injected TBX18 mRNA provided rate-adaptive cardiac pacing for one month that strongly correlated with the animal's sinus rhythm and physical activity. TBX18 mRNA may aid the development of biological pacemakers.

2.
Antibodies (Basel) ; 13(1)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38534207

RESUMO

IgG Fc N-glycosylation is necessary for effector functions and is an important component of quality control. The choice of antibody manufacturing platform has the potential to significantly influence the Fc glycans of an antibody and consequently alter their activity and clinical profile. The Human Contraception Antibody (HCA) is an IgG1 antisperm monoclonal antibody (mAb) currently in clinical development as a novel, non-hormonal contraceptive. Part of its development is selecting a suitable expression platform to manufacture HCA for use in the female reproductive tract. Here, we compared the Fc glycosylation of HCA produced in two novel mAb manufacturing platforms, namely transgenic tobacco plants (Nicotiana benthamiana; HCA-N) and mRNA-mediated expression in human vaginal cells (HCAmRNA). The Fc N-glycan profiles of the two HCA products were determined using mass spectrometry. Major differences in site occupancy, glycan types, and glycoform distributions were revealed. To address how these differences affect Fc function, antibody-dependent cellular phagocytosis (ADCP) assays were performed. The level of sperm phagocytosis was significantly lower in the presence of HCA-N than HCAmRNA. This study provides evidence that the two HCA manufacturing platforms produce functionally distinct HCAs; this information could be useful for the selection of an optimal platform for HCA clinical development and for mAbs in general.

3.
Adv Healthc Mater ; 13(17): e2304033, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38318754

RESUMO

Poly(ethylene glycol) (PEG)-lipids are used in Food-and-Drug-Administration-approved lipid nanoparticle (LNP)-RNA drugs, which are safe and effective. However, it is reported that PEG-lipids may also contribute to accelerated blood clearance and rare cases of hypersensitivity; this highlights the utility of exploring PEG-lipid alternatives. Here, it is shown that LNPs containing poly(2-ethyl-2-oxazoline) (PEOZ)-lipids can deliver messenger RNA (mRNA) to multiple cell types in mice inside and outside the liver. In addition, it is reported that LNPs formulated with PEOZ-lipids show reduced clearance from the bloodstream and lower levels of antistealth lipid immunoglobulin Ms than LNPs formulated with PEG-lipids. These data justify further exploration of PEOZ-lipids as alternatives to PEG-lipids in LNP-RNA formulations.


Assuntos
Lipídeos , Nanopartículas , Poliaminas , Polietilenoglicóis , Polietilenoglicóis/química , Animais , Poliaminas/química , Nanopartículas/química , Camundongos , Lipídeos/química , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
J Control Release ; 357: 394-403, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37028451

RESUMO

Lipid nanoparticles (LNPs) are a clinically relevant way to deliver therapeutic mRNA to hepatocytes in patients. However, LNP-mRNA delivery to end-stage solid tumors such as head and neck squamous cell carcinoma (HNSCC) remains more challenging. While scientists have used in vitro assays to evaluate potential nanoparticles for HNSCC delivery, high-throughput delivery assays performed directly in vivo have not been reported. Here we use a high-throughput LNP assay to evaluate how 94 chemically distinct nanoparticles delivered nucleic acids to HNSCC solid tumors in vivo. DNA barcodes were used to identify LNPHNSCC, a novel LNP for systemic delivery to HNSCC solid tumors. Importantly, LNPHNSCC retains tropism to HNSCC solid tumors while minimizing off-target delivery to the liver.


Assuntos
Neoplasias de Cabeça e Pescoço , Nanopartículas , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , RNA Mensageiro/genética , Lipídeos , Neoplasias de Cabeça e Pescoço/genética , RNA Interferente Pequeno/genética
5.
Sci Adv ; 6(30): eaba5672, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32743074

RESUMO

The biological pathways that affect drug delivery in vivo remain poorly understood. We hypothesized that altering cell metabolism with phosphatidylinositol (3,4,5)-triphosphate (PIP3), a bioactive lipid upstream of the metabolic pathway PI3K (phosphatidylinositol 3-kinase)/AKT/ mTOR (mammalian target of rapamycin) would transiently increase protein translated by nanoparticle-delivered messenger RNA (mRNA) since these pathways increase growth and proliferation. Instead, we found that PIP3 blocked delivery of clinically-relevant lipid nanoparticles (LNPs) across multiple cell types in vitro and in vivo. PIP3-driven reductions in LNP delivery were not caused by toxicity, cell uptake, or endosomal escape. Interestingly, RNA sequencing and metabolomics analyses suggested an increase in basal metabolic rate. Higher transcriptional activity and mitochondrial expansion led us to formulate two competing hypotheses that explain the reductions in LNP-mediated mRNA delivery. First, PIP3 induced consumption of limited cellular resources, "drowning out" exogenously-delivered mRNA. Second, PIP3 triggers a catabolic response that leads to protein degradation and decreased translation.


Assuntos
Lipídeos , Nanopartículas , Fosfatos de Fosfatidilinositol , Lipossomos , Nanopartículas/metabolismo , Fosfatidilinositol 3-Quinases , Fosfatos de Fosfatidilinositol/metabolismo , RNA Mensageiro/genética
6.
Biol Reprod ; 103(2): 275-285, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32607584

RESUMO

Sexually transmitted infections are highly prevalent, and over 40% of pregnancies are unplanned. We are producing new antibody-based multipurpose prevention technology products to address these problems and fill an unmet need in female reproductive health. We used a Nicotiana platform to manufacture monoclonal antibodies against two prevalent sexually transmitted pathogens, HIV-1 and HSV-2, and incorporated them into a vaginal film (MB66) for preclinical and Phase 1 clinical testing. These tests are now complete and indicate that MB66 is effective and safe in women. We are now developing an antisperm monoclonal antibody to add contraceptive efficacy to this product. The antisperm antibody, H6-3C4, originally isolated by Shinzo Isojima from the blood of an infertile woman, recognizes a carbohydrate epitope on CD52g, a glycosylphosphatidylinositol-anchored glycoprotein found in abundance on the surface of human sperm. We engineered the antibody for production in Nicotiana; the new antibody which we call "human contraception antibody," effectively agglutinates sperm at concentrations >10 µg/ml and maintains activity under a variety of physiological conditions. We are currently seeking regulatory approval for a Phase 1 clinical trial, which will include safety and "proof of principle" efficacy endpoints. Concurrently, we are working with new antibody production platforms to bring the costs down, innovative antibody designs that may produce more effective second-generation antibodies, and delivery systems to provide extended protection.


Assuntos
Anticorpos Monoclonais , Anticoncepção/métodos , Saúde Reprodutiva , Feminino , Humanos , Masculino
7.
J Neuroinflammation ; 17(1): 197, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32563258

RESUMO

BACKGROUND: Appropriately modulating inflammation after traumatic brain injury (TBI) may prevent disabilities for the millions of those inflicted annually. In TBI, cellular mediators of inflammation, including macrophages and microglia, possess a range of phenotypes relevant for an immunomodulatory therapeutic approach. It is thought that early phenotypic modulation of these cells will have a cascading healing effect. In fact, an anti-inflammatory, "M2-like" macrophage phenotype after TBI has been associated with neurogenesis, axonal regeneration, and improved white matter integrity (WMI). There already exist clinical trials seeking an M2-like bias through mesenchymal stem/stromal cells (MSCs). However, MSCs do not endogenously synthesize key signals that induce robust M2-like phenotypes such as interleukin-4 (IL-4). METHODS: To enrich M2-like macrophages in a clinically relevant manner, we augmented MSCs with synthetic IL-4 mRNA to transiently express IL-4. These IL-4 expressing MSCs (IL-4 MSCs) were characterized for expression and functionality and then delivered in a modified mouse TBI model of closed head injury. Groups were assessed for functional deficits and MR imaging. Brain tissue was analyzed through flow cytometry, multi-plex ELISA, qPCR, histology, and RNA sequencing. RESULTS: We observed that IL-4 MSCs indeed induce a robust M2-like macrophage phenotype and promote anti-inflammatory gene expression after TBI. However, here we demonstrate that acute enrichment of M2-like macrophages did not translate to improved functional or histological outcomes, or improvements in WMI on MR imaging. To further understand whether dysfunctional pathways underlie the lack of therapeutic effect, we report transcriptomic analysis of injured and treated brains. Through this, we discovered that inflammation persists despite acute enrichment of M2-like macrophages in the brain. CONCLUSION: The results demonstrate that MSCs can be engineered to induce a stronger M2-like macrophage response in vivo. However, they also suggest that acute enrichment of only M2-like macrophages after diffuse TBI cannot orchestrate neurogenesis, axonal regeneration, or improve WMI. Here, we also discuss our modified TBI model and methods to assess severity, behavioral studies, and propose that IL-4 expressing MSCs may also have relevance in other cavitary diseases or in improving biomaterial integration into tissues.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Interleucina-4/metabolismo , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Modelos Animais de Doenças , Inflamação/metabolismo , Masculino , Camundongos , Microglia/metabolismo
8.
Adv Mater ; 32(1): e1904905, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31743531

RESUMO

Clinical mRNA delivery remains challenging, in large part because how physiology alters delivery in vivo remains underexplored. For example, mRNA delivered by lipid nanoparticles (LNPs) is being considered to treat inflammation, but whether inflammation itself changes delivery remains understudied. Relationships between immunity, endocytosis, and mRNA translation lead to hypothesize that toll-like receptor 4 (TLR4) activation reduced LNP-mediated mRNA delivery. Therefore, LNP uptake, endosomal escape, and mRNA translation with and without TLR4 activation are quantified. In vivo DNA barcoding is used to discover a novel LNP that delivers mRNA to Kupffer cells at clinical doses; unlike most LNPs, this LNP does not preferentially target hepatocytes. TLR4 activation blocks mRNA translation in all tested cell types, without reducing LNP uptake; inhibiting TLR4 or its downstream effector protein kinase R improved delivery. The discrepant effects of TLR4 on i) LNP uptake and ii) translation suggests TLR4 activation can "override" LNP targeting, even after mRNA is delivered into target cells. Given near-future clinical trials using mRNA to modulate inflammation, this highlights the need to understand inflammatory signaling in on- and off-target cells. More generally, this suggests an LNP which delivers mRNA to one inflammatory disease may not deliver mRNA to another.


Assuntos
Imunidade Inata , Nanopartículas/química , RNA Mensageiro/metabolismo , Animais , Endocitose , Endossomos/metabolismo , Imunidade Inata/efeitos dos fármacos , Lipídeos/química , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Células RAW 264.7 , RNA Mensageiro/química , Receptor 4 Toll-Like/metabolismo
9.
Cancer Res ; 79(20): 5418-5431, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31481502

RESUMO

Abnormal post-transcriptional regulation induced by alterations of mRNA-protein interactions is critical during tumorigenesis and cancer progression and is a hallmark of cancer cells. A more thorough understanding is needed to develop treatments and foresee outcomes. Cellular and mouse tumor models are insufficient for vigorous investigation as they lack consistency and translatability to humans. Moreover, to date, studies in human tumor tissue are predominately limited to expression analysis of proteins and mRNA, which do not necessarily provide information about the frequency of mRNA-protein interactions. Here, we demonstrate novel optimization of a method that is based on FISH and proximity ligation techniques to quantify mRNA interactions with RNA-binding proteins relevant for tumorigenesis and cancer progression in archival patient-derived tumor tissue. This method was validated for multiple mRNA-protein pairs in several cellular models and in multiple types of archival human tumor samples. Furthermore, this approach allowed high-throughput analysis of mRNA-protein interactions across a wide range of tumor types and stages through tumor microarrays. This method is quantitative, specific, and sensitive for detecting interactions and their localization at both the individual cell and whole-tissue scales with single interaction sensitivity. This work presents an important tool in investigating post-transcriptional regulation in cancer on a high-throughput scale, with great potential for translatability into any applications where mRNA-protein interactions are of interest. SIGNIFICANCE: This work presents an approach to sensitively, specifically, and quantitatively detect and localize native mRNA and protein interactions for analysis of abnormal post-transcriptional regulation in patient-derived archival tumor samples.


Assuntos
Neoplasias do Colo/química , Ensaios de Triagem em Larga Escala/métodos , Neoplasias Pulmonares/química , Proteínas de Neoplasias/análise , Processamento Pós-Transcricional do RNA , RNA Mensageiro/análise , RNA Neoplásico/análise , Proteínas de Ligação a RNA/análise , Análise Serial de Tecidos/métodos , Animais , Bancos de Espécimes Biológicos , Linhagem Celular Tumoral , Chlorocebus aethiops , Neoplasias do Colo/patologia , Corantes Fluorescentes , Humanos , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/patologia , Camundongos , Microscopia de Fluorescência , Análise de Célula Única , Organismos Livres de Patógenos Específicos , Células Vero
10.
J Immunol ; 202(2): 608-617, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30541883

RESUMO

Therapeutic strategies based on in vitro-transcribed mRNA (IVT) are attractive because they avoid the permanent signature of genomic integration that is associated with DNA-based therapy and result in the transient production of proteins of interest. To date, IVT has mainly been used in vaccination protocols to generate immune responses to foreign Ags. In this "proof-of-principle" study, we explore a strategy of combinatorial IVT to recruit and reprogram immune effector cells to acquire divergent biological functions in mice in vivo. First, we demonstrate that synthetic mRNA encoding CCL3 is able to recruit murine monocytes in a nonprogrammed state, exhibiting neither bactericidal nor tissue-repairing properties. However, upon addition of either Ifn-γ mRNA or Il-4 mRNA, we successfully polarized these cells to adopt either M1 or M2 macrophage activation phenotypes. This cellular reprogramming was demonstrated through increased expression of known surface markers and through the differential modulation of NADPH oxidase activity, or the superoxide burst. Our study demonstrates how IVT strategies can be combined to recruit and reprogram immune effector cells that have the capacity to fulfill complex biological tasks in vivo.


Assuntos
Reprogramação Celular , Macrófagos/imunologia , Monócitos/imunologia , RNA Mensageiro/imunologia , Animais , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Quimiocina CCL3/genética , Células HeLa , Humanos , Interferon gama/genética , Interleucina-4/genética , Linfócitos/imunologia , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Estudo de Prova de Conceito , RNA Mensageiro/síntese química , Transcrição Gênica
11.
Nat Commun ; 9(1): 3999, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275522

RESUMO

The lung is a critical prophylaxis target for clinically important infectious agents, including human respiratory syncytial virus (RSV) and influenza. Here, we develop a modular, synthetic mRNA-based approach to express neutralizing antibodies directly in the lung via aerosol, to prevent RSV infections. First, we express palivizumab, which reduces RSV F copies by 90.8%. Second, we express engineered, membrane-anchored palivizumab, which prevents detectable infection in transfected cells, reducing in vitro titer and in vivo RSV F copies by 99.7% and 89.6%, respectively. Finally, we express an anchored or secreted high-affinity, anti-RSV F, camelid antibody (RSV aVHH and sVHH). We demonstrate that RSV aVHH, but not RSV sVHH, significantly inhibits RSV 7 days post transfection, and we show that RSV aVHH is present in the lung for at least 28 days. Overall, our data suggests that expressing membrane-anchored broadly neutralizing antibodies in the lungs could potentially be a promising pulmonary prophylaxis approach.


Assuntos
Anticorpos Neutralizantes/imunologia , Antivirais/administração & dosagem , Palivizumab/imunologia , RNA Mensageiro/administração & dosagem , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sincicial Respiratório Humano/imunologia , Animais , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/metabolismo , Antivirais/imunologia , Linhagem Celular , Membrana Celular/metabolismo , Feminino , Humanos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Palivizumab/genética , Palivizumab/metabolismo , Profilaxia Pré-Exposição , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Proteínas Virais de Fusão/imunologia
12.
J Biol Chem ; 293(41): 15867-15886, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30108174

RESUMO

Transforming growth factor-ß (TGFß) signaling through SMAD2/3 is an important driver of pathological fibrosis in multiple organ systems. TGFß signaling and extracellular matrix (ECM) stiffness form an unvirtuous pathological circuit in which matrix stiffness drives activation of latent TGFß, and TGFß signaling then drives cellular stress and ECM synthesis. Moreover, ECM stiffness also appears to sensitize cells to exogenously activated TGFß through unknown mechanisms. Here, using human fibroblasts, we explored the effect of ECM stiffness on a putative inner nuclear membrane protein, LEM domain-containing protein 3 (LEMD3), which is physically connected to the cell's actin cytoskeleton and inhibits TGFß signaling. We showed that LEMD3-SMAD2/3 interactions are inversely correlated with ECM stiffness and TGFß-driven luciferase activity and that LEMD3 expression is correlated with the mechanical response of the TGFß-driven luciferase reporter. We found that actin polymerization but not cellular stress or LEMD3-nuclear-cytoplasmic couplings were necessary for LEMD3-SMAD2/3 interactions. Intriguingly, LEMD3 and SMAD2/3 frequently interacted in the cytosol, and we discovered LEMD3 was proteolytically cleaved into protein fragments. We confirmed that a consensus C-terminal LEMD3 fragment binds SMAD2/3 in a stiffness-dependent manner throughout the cell and is sufficient for antagonizing SMAD2/3 signaling. Using human lung biopsies, we observed that these nuclear and cytosolic interactions are also present in tissue and found that fibrotic tissues exhibit locally diminished and cytoplasmically shifted LEMD3-SMAD2/3 interactions, as noted in vitro Our work reveals novel LEMD3 biology and stiffness-dependent regulation of TGFß by LEMD3, providing a novel target to antagonize pathological TGFß signaling.


Assuntos
Mecanotransdução Celular/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Actinas/metabolismo , Citosol/metabolismo , Proteínas de Ligação a DNA , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Lâmina Nuclear/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fosforilação , Proteína Fosfatase 2C/metabolismo , Proteína Smad2/antagonistas & inibidores , Proteína Smad2/química , Proteína Smad3/antagonistas & inibidores , Proteína Smad3/química , Fator de Crescimento Transformador beta/antagonistas & inibidores
13.
PLoS Pathog ; 14(8): e1007278, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30153309

RESUMO

The GI tract is preferentially targeted during acute/early HIV-1 infection. Consequent damage to the gut plays a central role in HIV pathogenesis. The basis for preferential targeting of gut tissues is not well defined. Recombinant proteins and synthetic peptides derived from HIV and SIV gp120 bind directly to integrin α4ß7, a gut-homing receptor. Using both cell-surface expressed α4ß7 and a soluble α4ß7 heterodimer we demonstrate that its specific affinity for gp120 is similar to its affinity for MAdCAM (its natural ligand). The gp120 V2 domain preferentially engages extended forms of α4ß7 in a cation -sensitive manner and is inhibited by soluble MAdCAM. Thus, V2 mimics MAdCAM in the way that it binds to α4ß7, providing HIV a potential mechanism to discriminate between functionally distinct subsets of lymphocytes, including those with gut-homing potential. Furthermore, α4ß7 antagonists developed for the treatment of inflammatory bowel diseases, block V2 binding to α4ß7. A 15-amino acid V2 -derived peptide is sufficient to mediate binding to α4ß7. It includes the canonical LDV/I α4ß7 binding site, a cryptic epitope that lies 7-9 amino acids amino terminal to the LDV/I, and residues K169 and I181. These two residues were identified in a sieve analysis of the RV144 vaccine trial as sites of vaccine -mediated immune pressure. HIV and SIV V2 mAbs elicited by both vaccination and infection that recognize this peptide block V2-α4ß7 interactions. These mAbs recognize conformations absent from the ß- barrel presented in a stabilized HIV SOSIP gp120/41 trimer. The mimicry of MAdCAM-α4ß7 interactions by V2 may influence early events in HIV infection, particularly the rapid seeding of gut tissues, and supports the view that HIV replication in gut tissue is a central feature of HIV pathogenesis.


Assuntos
Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/prevenção & controle , Integrinas/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vacinas contra a AIDS/química , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/metabolismo , Animais , Anticorpos Monoclonais , Sítios de Ligação/imunologia , Linhagem Celular Tumoral , Epitopos/química , Epitopos/imunologia , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/imunologia , HIV-1/imunologia , Macaca , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/imunologia , Vacinas contra a SAIDS/química , Vacinas contra a SAIDS/imunologia , Vacinas contra a SAIDS/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vacinação/métodos
14.
Nano Lett ; 18(3): 2148-2157, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29489381

RESUMO

Endothelial cells and macrophages play active roles in disease and as a result are important targets for nucleic acid therapies. While thousands of chemically distinct lipid nanoparticles (LNPs) can be synthesized to deliver nucleic acids, studying more than a few LNPs in vivo is challenging. As a result, it is difficult to understand how nanoparticles target these cells in vivo. Using high throughput LNP barcoding, we quantified how well LNPs delivered DNA barcodes to endothelial cells and macrophages in vitro, as well as endothelial cells and macrophages isolated from the lung, heart, and bone marrow in vivo. We focused on two fundamental questions in drug delivery. First, does in vitro LNP delivery predict in vivo LNP delivery? By comparing how 281 LNPs delivered barcodes to endothelial cells and macrophages in vitro and in vivo, we found in vitro delivery did not predict in vivo delivery. Second, does LNP delivery change within the microenvironment of a tissue? We quantified how 85 LNPs delivered barcodes to eight splenic cell populations, and found that cell types derived from myeloid progenitors tended to be targeted by similar LNPs, relative to cell types derived from lymphoid progenitors. These data demonstrate that barcoded LNPs can elucidate fundamental questions about in vivo nanoparticle delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Lipídeos/química , Nanopartículas/química , Ácidos Nucleicos/administração & dosagem , Animais , Linhagem Celular , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanotecnologia , Ácidos Nucleicos/farmacocinética
15.
Nat Commun ; 8(1): 667, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28939853

RESUMO

The human respiratory syncytial virus G protein plays an important role in the entry and assembly of filamentous virions. Here, we report the use of fluorescently labeled soybean agglutinin to selectively label the respiratory syncytial virus G protein in living cells without disrupting respiratory syncytial virus infectivity or filament formation and allowing for interrogations of respiratory syncytial virus virion assembly. Using this approach, we discovered that plasma membrane-bound respiratory syncytial virus G rapidly recycles from the membrane via clathrin-mediated endocytosis. This event is then followed by the dynamic formation of filamentous and branched respiratory syncytial virus particles, and assembly with genomic ribonucleoproteins and caveolae-associated vesicles prior to re-insertion into the plasma membrane. We demonstrate that these processes are halted by the disruption of microtubules and inhibition of molecular motors. Collectively, our results show that for respiratory syncytial virus assembly, viral filaments are produced and loaded with genomic RNA prior to insertion into the plasma membrane.Assembly of filamentous RSV particles is incompletely understood due to a lack of techniques suitable for live-cell imaging. Here Vanover et al. use labeled soybean agglutinin to selectively label RSV G protein and show how filamentous RSV assembly, initiated in the cytoplasm, uses G protein recycled from the plasma membrane.


Assuntos
Membrana Celular/metabolismo , RNA Viral/metabolismo , Vírus Sincicial Respiratório Humano/genética , Proteínas Virais de Fusão/metabolismo , Animais , Caveolinas/metabolismo , Chlorocebus aethiops , Clatrina/metabolismo , Endocitose/fisiologia , Humanos , Microtúbulos/metabolismo , Imagem Molecular/métodos , Lectinas de Plantas/química , Lectinas de Plantas/metabolismo , Vírus Sincicial Respiratório Humano/patogenicidade , Vírus Sincicial Respiratório Humano/fisiologia , Ribonucleoproteínas/metabolismo , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Células Vero , Replicação Viral
16.
Science ; 354(6309): 197-202, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27738167

RESUMO

Antiretroviral drug therapy (ART) effectively suppresses replication of both the immunodeficiency viruses, human (HIV) and simian (SIV); however, virus rebounds soon after ART is withdrawn. SIV-infected monkeys were treated with a 90-day course of ART initiated at 5 weeks post infection followed at 9 weeks post infection by infusions of a primatized monoclonal antibody against the α4ß7 integrin administered every 3 weeks until week 32. These animals subsequently maintained low to undetectable viral loads and normal CD4+ T cell counts in plasma and gastrointestinal tissues for more than 9 months, even after all treatment was withdrawn. This combination therapy allows macaques to effectively control viremia and reconstitute their immune systems without a need for further therapy.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Imunização Passiva/métodos , Integrina alfa4/imunologia , Cadeias beta de Integrinas/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Viremia/terapia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais Humanizados/administração & dosagem , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Terapia Combinada , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Trato Gastrointestinal/imunologia , Infusões Intravenosas , Células Matadoras Naturais/imunologia , Macaca mulatta , Masculino , Glicoproteínas de Membrana/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/isolamento & purificação , Subpopulações de Linfócitos T/imunologia , Tretinoína/sangue , Proteínas do Envelope Viral/imunologia , Carga Viral/imunologia , Viremia/sangue , Viremia/tratamento farmacológico , Viremia/virologia
17.
J Control Release ; 234: 1-9, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27165808

RESUMO

Ultrasound has been studied as a promising tool for intracellular gene delivery. In this work, we studied gene transfection of a human prostate cancer cell line exposed to megahertz pulsed ultrasound in the presence of contrast agent and assessed the efficiency of fluorescently labelled DNA delivery into cell nuclei, which is necessary for gene transfection. At the sonication conditions studied, ~30% of cells showed DNA uptake 30min after sonication, but that fraction decreased over time to ~10% of cells after 24h. Most cells containing DNA had DNA in their nuclei, but the amount varied significantly. Transfection efficiency peaked at ~10% at 8h post sonication. Among those cells containing DNA, ~30% of DNA was localized in the cell nuclei, ~30% was in autophagosomes/autophagolysosomes and the remainder was "free" in the cytoplasm 30min after sonication. At later times up to 24h, ~30% of DNA continued to be found in the nuclei and most or all of the rest of the DNA was in autophagosomes/autophagolysosomes. These results demonstrate that ultrasound can deliver DNA into cell nuclei shortly after sonication and that the rest of the DNA can be cleared by autophagosomes/autophagolysosomes.


Assuntos
DNA/genética , Fonoforese , Sonicação , Transfecção/métodos , Transporte Biológico , Linhagem Celular Tumoral , Núcleo Celular/genética , Citometria de Fluxo , Técnicas de Transferência de Genes , Humanos , Masculino , Microscopia Confocal
18.
Methods ; 98: 91-98, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26875782

RESUMO

Viruses represent an important class of pathogens that have had an enormous impact on the health of the human race. They are extraordinarily diverse; viral particles can range in size from ∼80nm to ∼10µm in length, and contain genomes with RNA or DNA strands. Regardless of their genome type, RNA species are frequently generated as a part of their replication process, and for viruses with RNA genomes, their loading into the virion represents a critical step in the creation of infectious particles. RNA imaging tools represent a powerful approach to gain insight into fundamental viral processes, including virus entry, replication, and virion assembly. Imaging viral processes in live cells is critical due to both the heterogeneity of these processes on a per cell basis, and the inherent dynamics of these processes. There are a number of methods for labeling RNA in live cells; we'll introduce the myriad of methods and then focus on one approach for labeling viral RNA, using multiply-labeled tetravalent RNA imaging probes (MTRIPs), which do not require engineering of the target RNAs. We feel this approach is advantageous given many viral genomes may not tolerate large nucleotide insertions into their sequences.


Assuntos
Regulação Viral da Expressão Gênica , HIV-1/química , Imagem Molecular/métodos , RNA Mensageiro/química , RNA Viral/química , Vírus Sinciciais Respiratórios/química , Coloração e Rotulagem/métodos , Animais , Chlorocebus aethiops , Corantes Fluorescentes/química , HIV-1/genética , HIV-1/metabolismo , Células Hep G2 , Humanos , Oligonucleotídeos/química , Sondas RNA/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/metabolismo , Células Vero , Vírion/química , Vírion/genética , Vírion/metabolismo
19.
Drug Deliv Transl Res ; 5(2): 116-24, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25787737

RESUMO

Aggressive surgical resection is the primary therapy for glioma. However, aggressive resection may compromise functional healthy brain tissue. Currently, there are no objective cues for surgeons to distinguish healthy tissue from tumor and determine tumor borders; surgeons skillfully rely on subjective means such as tactile feedback. This often results in incomplete resection and recurrence. The objective of the present study was to design, develop, and evaluate, in vitro and in vivo, a nanoencapsulated visible dye for intraoperative, visual delineation of tumor margins in an invasive tumor model. Liposomal nanocarriers containing Evans blue dye (nano-EB) were developed, characterized, and tested for safety in vitro and in vivo. 3RT1RT2A glioma cells were implanted into brains of Fischer 344 rats. Nano-EB or EB solution was injected via tail vein into tumor-bearing animals. To assess tumor staining, tissue samples were analyzed visibly and using fluorescence microscopy. Area, perimeter ratios, and Manders overlap coefficients were calculated to quantify extent of staining. Nano-EB clearly marked tumor margins in the invasive tumor model. Area ratio of nano-EB staining to tumor was 0.89 ± 0.05, perimeter ratio was 0.94 ± 0.04, Manders R was 0.51 ± 0.08, and M1 was 0.97 ± 0.06. Microscopic tumor border inspection under high magnification verified that nano-EB did not stain healthy tissue. Nano-EB clearly aids in distinguishing tumor tissue from healthy tissue in an invasive tumor model, while injection of unencapsulated EB results in false identification of healthy tissue as tumor due to diffusion of dye from the tumor into healthy tissue.


Assuntos
Corantes/administração & dosagem , Azul Evans/administração & dosagem , Nanopartículas/administração & dosagem , Animais , Astrócitos/efeitos dos fármacos , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Glioma/metabolismo , Lipossomos , Masculino , Ratos , Ratos Endogâmicos F344
20.
Nat Methods ; 12(5): 427-32, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25751144

RESUMO

The detection of viral dynamics and localization in the context of controlled HIV infection remains a challenge and is limited to blood and biopsies. We developed a method to capture total-body simian immunodeficiency virus (SIV) replication using immunoPET (antibody-targeted positron emission tomography). The administration of a poly(ethylene glycol)-modified, (64)Cu-labeled SIV Gp120-specific antibody led to readily detectable signals in the gastrointestinal and respiratory tract, lymphoid tissues and reproductive organs of viremic monkeys. Viral signals were reduced in aviremic antiretroviral-treated monkeys but detectable in colon, select lymph nodes, small bowel, nasal turbinates, the genital tract and lung. In elite controllers, virus was detected primarily in foci in the small bowel, select lymphoid areas and the male reproductive tract, as confirmed by quantitative reverse-transcription PCR (qRT-PCR) and immunohistochemistry. This real-time, in vivo viral imaging method has broad applications to the study of immunodeficiency virus pathogenesis, drug and vaccine development, and the potential for clinical translation.


Assuntos
Antirretrovirais/uso terapêutico , Tomografia por Emissão de Pósitrons/métodos , Vírus da Imunodeficiência Símia , Imagem Corporal Total/métodos , Adenina/análogos & derivados , Adenina/uso terapêutico , Animais , Radioisótopos de Cobre , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Emtricitabina , Imuno-Histoquímica , Masculino , Glicoproteínas de Membrana/metabolismo , Naftiridinas/uso terapêutico , Organofosfonatos/uso terapêutico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Tenofovir , Proteínas do Envelope Viral/metabolismo , Viremia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA