Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Genet ; 55(8): 1400-1412, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37500730

RESUMO

DNA sequencing-based studies of neurodevelopmental disorders (NDDs) have identified a wide range of genetic determinants. However, a comprehensive analysis of these data, in aggregate, has not to date been performed. Here, we find that genes encoding the mammalian SWI/SNF (mSWI/SNF or BAF) family of ATP-dependent chromatin remodeling protein complexes harbor the greatest number of de novo missense and protein-truncating variants among nuclear protein complexes. Non-truncating NDD-associated protein variants predominantly disrupt the cBAF subcomplex and cluster in four key structural regions associated with high disease severity, including mSWI/SNF-nucleosome interfaces, the ATPase-core ARID-armadillo repeat (ARM) module insertion site, the Arp module and DNA-binding domains. Although over 70% of the residues perturbed in NDDs overlap with those mutated in cancer, ~60% of amino acid changes are NDD-specific. These findings provide a foundation to functionally group variants and link complex aberrancies to phenotypic severity, serving as a resource for the chromatin, clinical genetics and neurodevelopment communities.


Assuntos
Montagem e Desmontagem da Cromatina , Transtornos do Neurodesenvolvimento , Animais , Humanos , Montagem e Desmontagem da Cromatina/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina/genética , Nucleossomos , Transtornos do Neurodesenvolvimento/genética , Mamíferos/genética
2.
Genet Med ; 24(10): 2051-2064, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35833929

RESUMO

PURPOSE: Although haploinsufficiency of ANKRD11 is among the most common genetic causes of neurodevelopmental disorders, the role of rare ANKRD11 missense variation remains unclear. We characterized clinical, molecular, and functional spectra of ANKRD11 missense variants. METHODS: We collected clinical information of individuals with ANKRD11 missense variants and evaluated phenotypic fit to KBG syndrome. We assessed pathogenicity of variants through in silico analyses and cell-based experiments. RESULTS: We identified 20 unique, mostly de novo, ANKRD11 missense variants in 29 individuals, presenting with syndromic neurodevelopmental disorders similar to KBG syndrome caused by ANKRD11 protein truncating variants or 16q24.3 microdeletions. Missense variants significantly clustered in repression domain 2 at the ANKRD11 C-terminus. Of the 10 functionally studied missense variants, 6 reduced ANKRD11 stability. One variant caused decreased proteasome degradation and loss of ANKRD11 transcriptional activity. CONCLUSION: Our study indicates that pathogenic heterozygous ANKRD11 missense variants cause the clinically recognizable KBG syndrome. Disrupted transrepression capacity and reduced protein stability each independently lead to ANKRD11 loss-of-function, consistent with haploinsufficiency. This highlights the diagnostic relevance of ANKRD11 missense variants, but also poses diagnostic challenges because the KBG-associated phenotype may be mild and inherited pathogenic ANKRD11 (missense) variants are increasingly observed, warranting stringent variant classification and careful phenotyping.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Proteínas Repressoras , Anormalidades Dentárias , Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/etiologia , Doenças do Desenvolvimento Ósseo/genética , Deleção Cromossômica , Fácies , Humanos , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Fenótipo , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Repressoras/genética , Anormalidades Dentárias/diagnóstico , Fatores de Transcrição/genética
3.
Front Immunol ; 13: 883826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572556

RESUMO

Background: Severe multilineage cytopenia in childhood caused by bone marrow failure (BMF) often represents a serious condition requiring specific management. Patients are at risk for invasive infections and bleeding complications. Previous studies report low rates of identifiable causes of pediatric BMF, rendering most patients with a descriptive diagnosis such as aplastic anemia (AA). Methods: We conducted a multi-center prospective cohort study in which an extensive diagnostic approach for pediatric patients with suspected BMF was implemented. After exclusion of malignant and transient causes of BMF, patients entered thorough diagnostic evaluation including bone marrow analysis, whole exome sequencing (WES) including copy number variation (CNV) analysis and/or single nucleotide polymorphisms (SNP) array analysis. In addition, functional and immunological evaluation were performed. Here we report the outcomes of the first 50 patients (2017-2021) evaluated by this approach. Results: In 20 patients (40%) a causative diagnosis was made. In this group, 18 diagnoses were established by genetic analysis, including 14 mutations and 4 chromosomal deletions. The 2 remaining patients had short telomeres while no causative genetic defect was found. Of the remaining 30 patients (60%), 21 were diagnosed with severe aplastic anemia (SAA) based on peripheral multi-lineage cytopenia and hypoplastic bone marrow, and 9 were classified as unexplained cytopenia without bone marrow hypoplasia. In total 28 patients had undergone hematopoietic stem cell transplantation (HSCT) of which 22 patients with an unknown cause and 6 patients with an identified cause for BMF. Conclusion: We conclude that a standardized in-depth diagnostic protocol as presented here, can increase the frequency of identifiable causes within the heterogeneous group of pediatric BMF. We underline the importance of full genetic analysis complemented by functional tests of all patients as genetic causes are not limited to patients with typical (syndromal) clinical characteristics beyond cytopenia. In addition, it is of importance to apply genome wide genetic analysis, since defects in novel genes are frequently discovered in this group. Identification of a causal abnormality consequently has implications for the choice of treatment and in some cases prevention of invasive therapies.


Assuntos
Anemia Aplástica , Pancitopenia , Anemia Aplástica/diagnóstico , Anemia Aplástica/genética , Anemia Aplástica/terapia , Transtornos da Insuficiência da Medula Óssea , Criança , Variações do Número de Cópias de DNA , Humanos , Estudos Prospectivos
4.
Am J Med Genet A ; 188(5): 1578-1582, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35084080

RESUMO

Previously, mutations in the AMMECR1 gene have been described in six males with developmental delay, sensorineural hearing loss (SNHL) and/or congenital abnormalities, including fetal nuchal edema, fetal pericardial effusion, talipes, congenital hip dysplasia, elliptocytosis and cleft palate. In this report, we present three female relatives of a male fetus with an intragenic deletion in this X-linked gene. All three women reported hearing loss and one was born with a soft cleft palate and hip dysplasia. The audiograms showed mild to moderate SNHL with a variable pattern of the affected frequencies. Immunohistochemical analysis of fetal cochlea was performed confirming the expression of AMMECR1 in the human inner ear. Since hearing loss, cleft palate and congenital hip dysplasia were reported before in male AMMECR1 point mutation carriers and AMMECR1 is expressed in fetal inner ear, we suggest that female carriers may display a partial phenotype in this X-linked condition.


Assuntos
Fissura Palatina , Surdez , Eliptocitose Hereditária , Perda Auditiva Neurossensorial , Perda Auditiva , Luxação Congênita de Quadril , Fissura Palatina/diagnóstico , Fissura Palatina/genética , Eliptocitose Hereditária/genética , Feminino , Perda Auditiva/genética , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Humanos , Masculino , Proteínas/genética
5.
Nat Commun ; 10(1): 2966, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273213

RESUMO

Mutations in genes encoding components of BAF (BRG1/BRM-associated factor) chromatin remodeling complexes cause neurodevelopmental disorders and tumors. The mechanisms leading to the development of these two disease entities alone or in combination remain unclear. We generated mice with a heterozygous nervous system-specific partial loss-of-function mutation in a BAF core component gene, Smarcb1. These Smarcb1 mutant mice show various brain midline abnormalities that are also found in individuals with Coffin-Siris syndrome (CSS) caused by SMARCB1, SMARCE1, and ARID1B mutations and in SMARCB1-related intellectual disability (ID) with choroid plexus hyperplasia (CPH). Analyses of the Smarcb1 mutant animals indicate that one prominent midline abnormality, corpus callosum agenesis, is due to midline glia aberrations. Our results establish a novel role of Smarcb1 in the development of the brain midline and have important clinical implications for BAF complex-related ID/neurodevelopmental disorders.


Assuntos
Anormalidades Múltiplas/genética , Agenesia do Corpo Caloso/genética , Corpo Caloso/crescimento & desenvolvimento , Face/anormalidades , Deformidades Congênitas da Mão/genética , Deficiência Intelectual/genética , Micrognatismo/genética , Pescoço/anormalidades , Proteína SMARCB1/genética , Anormalidades Múltiplas/diagnóstico por imagem , Agenesia do Corpo Caloso/diagnóstico por imagem , Agenesia do Corpo Caloso/patologia , Alelos , Animais , Criança , Pré-Escolar , Corpo Caloso/citologia , Corpo Caloso/diagnóstico por imagem , Modelos Animais de Doenças , Embrião de Mamíferos , Face/diagnóstico por imagem , Feminino , Deformidades Congênitas da Mão/diagnóstico por imagem , Humanos , Lactente , Deficiência Intelectual/diagnóstico por imagem , Mutação com Perda de Função , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Transgênicos , Micrognatismo/diagnóstico por imagem , Pescoço/diagnóstico por imagem , Neuroglia/patologia , Cultura Primária de Células
6.
Mol Genet Genomic Med ; 7(4): e00576, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30724488

RESUMO

BACKGROUND: Central serous chorioretinopathy (CSC) is a chorioretinal disease characterized by fluid accumulation between the neuroretina and retinal pigment epithelium with unknown etiology. Family studies have suggested a heritable component for CSC with an autosomal dominant inheritance pattern. Therefore, exome sequencing was performed on familial cCSC to indentify the genetic components contributing to familial cCSC. METHODS: Exome sequencing was performed on 72 individuals of 18 families with CSC. In these families, we determined whether rare genetic variants (minor allele frequency < 1%) were segregated with CSC and also performed familial gene-burden analysis. RESULTS: In total, 11 variants segregated in two out of 18 families. One of these variants, c.4145C>T; p.T1382I (rs61758735) in the PTPRB gene, was also associated with CSC in a large case-control cohort sequenced previously (p = 0.009). Additionally, in 28 genes two or more different heterozygous variants segregated in two or more families, but no gene showed consistent associations in both the family gene-burden results and gene-burden analysis in the case-control cohort. CONCLUSION: We identified potential candidate genes for familial CSC and managed to exclude Mendelian inheritance of variants in one or a limited number of genes. Instead, familial CSC may be a heterogeneous Mendelian disease caused by variants in many different genes, or alternatively CSC may represent a complex disease to which both environmental factors and genetics contribute.


Assuntos
Coriorretinopatia Serosa Central/genética , Frequência do Gene , Feminino , Humanos , Masculino , Linhagem , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Sequenciamento do Exoma
7.
Eur J Hum Genet ; 27(3): 455-465, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30552425

RESUMO

X-inactivation is a well-established dosage compensation mechanism ensuring that X-chromosomal genes are expressed at comparable levels in males and females. Skewed X-inactivation is often explained by negative selection of one of the alleles. We demonstrate that imbalanced expression of the paternal and maternal X-chromosomes is common in the general population and that the random nature of the X-inactivation mechanism can be sufficient to explain the imbalance. To this end, we analyzed blood-derived RNA and whole-genome sequencing data from 79 female children and their parents from the Genome of the Netherlands project. We calculated the median ratio of the paternal over total counts at all X-chromosomal heterozygous single-nucleotide variants with coverage ≥10. We identified two individuals where the same X-chromosome was inactivated in all cells. Imbalanced expression of the two X-chromosomes (ratios ≤0.35 or ≥0.65) was observed in nearly 50% of the population. The empirically observed skewing is explained by a theoretical model where X-inactivation takes place in an embryonic stage in which eight cells give rise to the hematopoietic compartment. Genes escaping X-inactivation are expressed from both alleles and therefore demonstrate less skewing than inactivated genes. Using this characteristic, we identified three novel escapee genes (SSR4, REPS2, and SEPT6), but did not find support for many previously reported escapee genes in blood. Our collective data suggest that skewed X-inactivation is common in the general population. This may contribute to manifestation of symptoms in carriers of recessive X-linked disorders. We recommend that X-inactivation results should not be used lightly in the interpretation of X-linked variants.


Assuntos
População/genética , Inativação do Cromossomo X , Proteínas de Ligação ao Cálcio/genética , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Glicoproteínas de Membrana/genética , Países Baixos , Polimorfismo de Nucleotídeo Único , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Peptídeos/genética , Septinas/genética
8.
Am J Hum Genet ; 100(1): 91-104, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27939640

RESUMO

Identification of over 500 epigenetic regulators in humans raises an interesting question regarding how chromatin dysregulation contributes to different diseases. Bromodomain and PHD finger-containing protein 1 (BRPF1) is a multivalent chromatin regulator possessing three histone-binding domains, one non-specific DNA-binding module, and several motifs for interacting with and activating three lysine acetyltransferases. Genetic analyses of fish brpf1 and mouse Brpf1 have uncovered an important role in skeletal, hematopoietic, and brain development, but it remains unclear how BRPF1 is linked to human development and disease. Here, we describe an intellectual disability disorder in ten individuals with inherited or de novo monoallelic BRPF1 mutations. Symptoms include infantile hypotonia, global developmental delay, intellectual disability, expressive language impairment, and facial dysmorphisms. Central nervous system and spinal abnormalities are also seen in some individuals. These clinical features overlap with but are not identical to those reported for persons with KAT6A or KAT6B mutations, suggesting that BRPF1 targets these two acetyltransferases and additional partners in humans. Functional assays showed that the resulting BRPF1 variants are pathogenic and impair acetylation of histone H3 at lysine 23, an abundant but poorly characterized epigenetic mark. We also found a similar deficiency in different lines of Brpf1-knockout mice. These data indicate that aberrations in the chromatin regulator gene BRPF1 cause histone H3 acetylation deficiency and a previously unrecognized intellectual disability syndrome.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Cromatina/metabolismo , Histonas/metabolismo , Deficiência Intelectual/genética , Mutação , Proteínas Nucleares/genética , Acetilação , Adolescente , Alelos , Animais , Proteínas de Transporte/genética , Criança , Cromatina/química , Proteínas de Ligação a DNA , Deficiências do Desenvolvimento/genética , Face/anormalidades , Feminino , Histona Acetiltransferases/genética , Humanos , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hipotonia Muscular/genética , Síndrome
9.
Am J Med Genet A ; 170(12): 3289-3293, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27570071

RESUMO

Postaxial polydactyly (PAP) is one of the most common congenital malformations observed in the general population. However, it can also occur as part of a syndrome. Unbiased genetic screening techniques such as exome sequencing are highly appropriate methods to provide a molecular diagnosis in patients with polydactyly due to the large number of mutated genes associated with it. The present study describes a consanguineous family of Pakistani origin with PAP, speech impairment, hearing impairment of variable degree, and proportionate short stature with no prominent intellectual disability or ophthalmological abnormalities. One affected individual of the family was subjected to exome sequencing which resulted in the identification of four homozygous variants including an in-frame deletion (c.1115_1117delCCT; p.(Ser372del) in MKS1, which was later shown to be the only variant segregating with the phenotype. In silico predictions supported the potential pathogenicity of the identified mutation. Additional clinical tests and MRI features of a patient in the family showed a molar tooth sign, which is a hallmark of Joubert syndrome. In conclusion, we have described a pathogenic variant in the MKS1 resulting in a mild Joubert syndrome phenotype, which broadens the spectrum of mutations in the MKS1. © 2016 Wiley Periodicals, Inc.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Cerebelo/anormalidades , Ciliopatias/diagnóstico , Ciliopatias/genética , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Mutação , Fenótipo , Proteínas/genética , Retina/anormalidades , Adolescente , Criança , Análise Mutacional de DNA , Exoma , Feminino , Estudos de Associação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Paquistão , Linhagem , Locos de Características Quantitativas , Radiografia , Adulto Jovem
10.
J Clin Endocrinol Metab ; 100(4): E672-80, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25594860

RESUMO

CONTEXT: PAPSS2 (PAPS synthase 2) provides the universal sulfate donor PAPS (3'-phospho-adenosine-5'-phosphosulfate) to all human sulfotransferases, including SULT2A1, responsible for sulfation of the crucial androgen precursor dehydroepiandrosterone (DHEA). Impaired DHEA sulfation is thought to increase the conversion of DHEA toward active androgens, a proposition supported by the previous report of a girl with inactivating PAPSS2 mutations who presented with low serum DHEA sulfate and androgen excess, clinically manifesting with premature pubarche and early-onset polycystic ovary syndrome. PATIENTS AND METHODS: We investigated a family harboring two novel PAPSS2 mutations, including two compound heterozygous brothers presenting with disproportionate short stature, low serum DHEA sulfate, but normal serum androgens. Patients and parents underwent a DHEA challenge test comprising frequent blood sampling and urine collection before and after 100 mg DHEA orally, with subsequent analysis of DHEA sulfation and androgen metabolism by mass spectrometry. The functional impact of the mutations was investigated in silico and in vitro. RESULTS: We identified a novel PAPSS2 frameshift mutation, c.1371del, p.W462Cfs*3, resulting in complete disruption, and a novel missense mutation, c.809G>A, p.G270D, causing partial disruption of DHEA sulfation. Both patients and their mother, who was heterozygous for p.W462Cfs*3, showed increased 5α-reductase activity at baseline and significantly increased production of active androgens after DHEA intake. The mother had a history of oligomenorrhea and chronic anovulation that required clomiphene for ovulation induction. CONCLUSIONS: We provide direct in vivo evidence for the significant functional impact of mutant PAPSS2 on DHEA sulfation and androgen activation. Heterozygosity for PAPSS2 mutations can be associated with a phenotype resembling polycystic ovary syndrome.


Assuntos
Androgênios/metabolismo , Desidroepiandrosterona/metabolismo , Hiperandrogenismo/genética , Complexos Multienzimáticos/genética , Mutação , Sulfato Adenililtransferase/genética , Sulfatos/metabolismo , Adolescente , Adulto , Sulfato de Desidroepiandrosterona/metabolismo , Família , Feminino , Humanos , Hiperandrogenismo/metabolismo , Masculino , Pessoa de Meia-Idade , Complexos Multienzimáticos/metabolismo , Sulfato Adenililtransferase/metabolismo , Adulto Jovem
11.
J Clin Endocrinol Metab ; 98(12): E1988-98, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24057292

RESUMO

BACKGROUND: C-type natriuretic peptide (CNP)/natriuretic peptide receptor 2 (NPR2) signaling is essential for long bone growth. Enhanced CNP production caused by chromosomal translocations results in tall stature, a Marfanoid phenotype, and skeletal abnormalities. A similar phenotype was described in a family with an activating NPR2 mutation within the guanylyl cyclase domain. CASE: Here we describe an extremely tall male without skeletal deformities, with a novel NPR2 mutation (p.Arg655Cys) located in the kinase homology domain. OBJECTIVES: The objective of the study was to investigate the functional and structural effects of the NPR2 mutation. METHODS: Guanylyl cyclase activities of wild-type vs mutant NPR2 were analyzed in transfected human embryonic kidney 293 cells and in skin fibroblasts. The former were also used to study possible interactions between both isoforms. Homology modeling was performed to understand the molecular impact of the mutation. RESULTS: CNP-stimulated cGMP production by the mutant NPR2 was markedly increased in patient skin fibroblasts and transfected human embryonic kidney 293 cells. The stimulatory effects of ATP on CNP-dependent guanylyl cyclase activity were augmented, suggesting that this novel mutation enhances both the responsiveness of NPR2 to CNP and its allosteric modulation/stabilization by ATP. Coimmunoprecipitation showed that wild-type and mutant NPR2 can form stable heterodimers, suggesting a dominant-positive effect. In accordance with augmented endogenous receptor activity, plasma N-terminal pro-CNP (a marker of CNP production in tissues) was reduced in the proband. CONCLUSIONS: We report the first activating mutation within the kinase homology domain of NPR2, resulting in extremely tall stature. Our observations emphasize the important role of this domain in the regulation of guanylyl cyclase activity and bone growth in response to CNP.


Assuntos
Desenvolvimento Ósseo , Doenças do Desenvolvimento Ósseo/genética , Mutação , Receptores do Fator Natriurético Atrial/genética , Substituição de Aminoácidos , Estatura , Doenças do Desenvolvimento Ósseo/metabolismo , Doenças do Desenvolvimento Ósseo/patologia , Domínio Catalítico , Ativação Enzimática , Humanos , Masculino , Pessoa de Meia-Idade , Receptores do Fator Natriurético Atrial/química , Receptores do Fator Natriurético Atrial/metabolismo
12.
Am J Med Genet A ; 161A(5): 973-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23494849

RESUMO

Chudley-McCullough syndrome (CMS) is characterized by profound sensorineural hearing loss and brain anomalies. Variants in GPSM2 have recently been reported as a cause of CMS by Doherty et al. In this study we have performed exome sequencing of three CMS patients from two unrelated families from the same Dutch village. We identified one homozygous frameshift GPSM2 variants c.1473delG in all patients. We show that this variant arises from a shared, rare haplotype. Since the c.1473delG variant was found in Mennonite settlers, it likely originated in Europe. To support DNA diagnostics, we established an LOVD database for GPSM2 containing all variants thus far described.


Assuntos
Agenesia do Corpo Caloso/genética , Cistos Aracnóideos/genética , Exoma/genética , Perda Auditiva Neurossensorial/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Adolescente , Adulto , Pré-Escolar , Europa (Continente) , Feminino , Efeito Fundador , Humanos , Lactente , Masculino , Mutação , Países Baixos , América do Norte , Linhagem , Análise de Sequência de DNA
13.
J Med Genet ; 49(9): 598-600, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22972950

RESUMO

BACKGROUND: Gene-targeting studies in mice have revealed a key role for EVI1 protein in the maintenance of haematopoiesis, and argue in favour of a gene dosage requirement for EVI1 in the regulation of haematopoietic stem cells. Furthermore, a fusion transcript of MDS1 and EVI1 has been shown to play a critical role in maintaining long-term haematopoietic stem cell function. Inappropriate activation of EVI1, usually due to a translocation, is a well known and unfavourable change in several myeloid malignancies. It is not known whether haploinsufficiency of any of these genes leads to disease in humans. METHODS: SNP array analysis in a patient with in a neonate with congenital thrombocytopenia and subsequent aplastic anaemia RESULTS AND CONCLUSIONS: We report for the first time a constitutional deletion encompassing the EVI1 and MDS1 genes in a human, and argue that the deletion causes congenital bone marrow failure in this patient.


Assuntos
Anemia Aplástica/genética , Cromossomos Humanos Par 3/genética , Proteínas de Ligação a DNA/genética , Proto-Oncogenes/genética , Deleção de Sequência/genética , Trombocitopenia/congênito , Trombocitopenia/genética , Fatores de Transcrição/genética , Adulto , Anemia Aplástica/complicações , Feminino , Humanos , Lactente , Recém-Nascido , Proteína do Locus do Complexo MDS1 e EVI1 , Masculino , Polimorfismo de Nucleotídeo Único/genética , Gravidez
14.
Epigenetics ; 7(11): 1219-24, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23010866

RESUMO

Heterozygous germline mutations in components of switch/sucrose nonfermenting (SWI/SNF) chromatin remodeling complexes were recently identified in patients with non-syndromic intellectual disability, Coffin-Siris syndrome and Nicolaides-Baraitser syndrome. The common denominator of the phenotype of these patients is severe intellectual disability and speech delay. Somatic and germline mutations in SWI/SNF components were previously implicated in tumor development. This raises the question whether patients with intellectual disability caused by SWI/SNF mutations in the germline are exposed to an increased risk of developing cancer. Here we compare the mutational spectrum of SWI/SNF components in intellectual disability syndromes and cancer, and discuss the implications of the results of this comparison for the patients.


Assuntos
Anormalidades Múltiplas/genética , Proteínas Cromossômicas não Histona/genética , Deformidades Congênitas do Pé/genética , Deformidades Congênitas da Mão/genética , Hipotricose/genética , Deficiência Intelectual/genética , Micrognatismo/genética , Neoplasias/genética , Fatores de Transcrição/genética , Montagem e Desmontagem da Cromatina , Face/anormalidades , Fácies , Genes de Troca , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Transtornos do Desenvolvimento da Linguagem/genética , Pescoço/anormalidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA