Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
BJC Rep ; 2(1): 48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962168

RESUMO

Background: Lynch syndrome (LS) is under-diagnosed. UK National Institute for Health and Care Excellence guidelines recommend multistep molecular testing of all colorectal cancers (CRCs) to screen for LS. However, the complexity of the pathway has resulted in limited improvement in diagnosis. Methods: One-step multiplex PCR was used to generate sequencing-ready amplicons from 14 microsatellite instability (MSI) markers and 22 BRAF, KRAS, and NRAS mutation hotspots. MSI and BRAF/RAS variants were detected using amplicon-sequencing and automated analysis. The assay was clinically validated and deployed into service in northern England, followed by regional and local audits to assess its impact. Results: MSI analysis achieved 99.1% sensitivity and 99.2% specificity and was reproducible (r = 0.995). Mutation hotspot analysis had 100% sensitivity, 99.9% specificity, and was reproducible (r = 0.998). Assay-use in service in 2022-2023 increased CRC testing (97.2% (2466/2536) versus 28.6% (601/2104)), halved turnaround times, and identified more CRC patients at-risk of LS (5.5% (139/2536) versus 2.9% (61/2104)) compared to 2019-2020 when a multi-test pathway was used. Conclusion: A novel amplicon-sequencing assay of CRCs, including all biomarkers for LS screening and anti-EGFR therapy, achieved >95% testing rate. Adoption of this low cost, scalable, and fully automatable test will complement on-going, national initiatives to improve LS screening.

2.
Front Oncol ; 13: 1147591, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143941

RESUMO

Introduction: Lynch syndrome-associated cancer develops due to germline pathogenic variants in one of the mismatch repair (MMR) genes, MLH1, MSH2, MSH6 or PMS2. Somatic second hits in tumors cause MMR deficiency, testing for which is used to screen for Lynch syndrome in colorectal cancer and to guide selection for immunotherapy. Both MMR protein immunohistochemistry and microsatellite instability (MSI) analysis can be used. However, concordance between methods can vary for different tumor types. Therefore, we aimed to compare methods of MMR deficiency testing in Lynch syndrome-associated urothelial cancers. Methods: Ninety-seven urothelial (61 upper tract and 28 bladder) tumors diagnosed from 1980 to 2017 in carriers of Lynch syndrome-associated pathogenic MMR variants and their first-degree relatives (FDR) were analyzed by MMR protein immunohistochemistry, the MSI Analysis System v1.2 (Promega), and an amplicon sequencing-based MSI assay. Two sets of MSI markers were used in sequencing-based MSI analysis: a panel of 24 and 54 markers developed for colorectal cancer and blood MSI analysis, respectively. Results: Among the 97 urothelial tumors, 86 (88.7%) showed immunohistochemical MMR loss and 68 were successfully analyzed by the Promega MSI assay, of which 48 (70.6%) were MSI-high and 20 (29.4%) were MSI-low/microsatellite stable. Seventy-two samples had sufficient DNA for the sequencing-based MSI assay, of which 55 (76.4%) and 61 (84.7%) scored as MSI-high using the 24-marker and 54-marker panels, respectively. The concordance between the MSI assays and immunohistochemistry was 70.6% (p = 0.003), 87.5% (p = 0.039), and 90.3% (p = 1.00) for the Promega assay, the 24-marker assay, and the 54-marker assay, respectively. Of the 11 tumors with retained MMR protein expression, four were MSI-low/MSI-high or MSI-high by the Promega assay or one of the sequencing-based assays. Conclusion: Our results show that Lynch syndrome-associated urothelial cancers frequently had loss of MMR protein expression. The Promega MSI assay was significantly less sensitive, but the 54-marker sequencing-based MSI analysis showed no significant difference compared to immunohistochemistry. Data from this study alongside previous studies, suggest that universal MMR deficiency testing of newly diagnosed urothelial cancers, using immunohistochemistry and/or sequencing-based MSI analysis of sensitive markers, offer a potentially useful approach to identification of Lynch syndrome cases.

4.
Int J Cancer ; 152(10): 2024-2031, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36214792

RESUMO

Lynch syndrome (LS) is the most common inherited cancer syndrome. It is inherited via a monoallelic germline variant in one of the DNA mismatch repair (MMR) genes. LS carriers have a broad 30% to 80% risk of developing various malignancies, and more precise, individual risk estimations would be of high clinical value, allowing tailored cancer prevention and surveillance. Due to MMR deficiency, LS cancers are characterized by the accumulation of frameshift mutations leading to highly immunogenic frameshift peptides (FSPs). Thus, immune surveillance is proposed to inhibit the outgrowth of MMR-deficient cell clones. Recent studies have shown that immunoediting during the evolution of MMR-deficient cancers leads to a counter-selection of highly immunogenic antigens. The immunogenicity of FSPs is dependent on the antigen presentation. One crucial factor determining antigen presentation is the HLA genotype. Hence, a LS carrier's HLA genotype plays an important role in the presentation of FSP antigens to the immune system, and may influence the likelihood of progression from precancerous lesions to cancer. To address the challenge of clarifying this possibility including diverse populations with different HLA types, we have established the INDICATE initiative (Individual cancer risk by HLA type, http://indicate-lynch.org/), an international network aiming at a systematic evaluation of the HLA genotype as a possible cancer risk modifier in LS. Here we summarize the current knowledge on the role of HLA type in cancer risk and outline future research directions to delineate possible association in the scenario of LS with genetically defined risk population and highly immunogenic tumors.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Humanos , Neoplasias Colorretais Hereditárias sem Polipose/genética , Mutação da Fase de Leitura , Reparo de Erro de Pareamento de DNA
5.
Gastroenterology ; 164(4): 579-592.e8, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36586540

RESUMO

BACKGROUND & AIMS: Constitutional mismatch repair deficiency (CMMRD) is a rare recessive childhood cancer predisposition syndrome caused by germline mismatch repair variants. Constitutional microsatellite instability (cMSI) is a CMMRD diagnostic hallmark and may associate with cancer risk. We quantified cMSI in a large CMMRD patient cohort to explore genotype-phenotype correlations using novel MSI markers selected for instability in blood. METHODS: Three CMMRD, 1 Lynch syndrome, and 2 control blood samples were genome sequenced to >120× depth. A pilot cohort of 8 CMMRD and 38 control blood samples and a blinded cohort of 56 CMMRD, 8 suspected CMMRD, 40 Lynch syndrome, and 43 control blood samples were amplicon sequenced to 5000× depth. Sample cMSI score was calculated using a published method comparing microsatellite reference allele frequencies with 80 controls. RESULTS: Thirty-two mononucleotide repeats were selected from blood genome and pilot amplicon sequencing data. cMSI scoring using these MSI markers achieved 100% sensitivity (95% CI, 93.6%-100.0%) and specificity (95% CI 97.9%-100.0%), was reproducible, and was superior to an established tumor MSI marker panel. Lower cMSI scores were found in patients with CMMRD with MSH6 deficiency and patients with at least 1 mismatch repair missense variant, and patients with biallelic truncating/copy number variants had higher scores. cMSI score did not correlate with age at first tumor. CONCLUSIONS: We present an inexpensive and scalable cMSI assay that enhances CMMRD detection relative to existing methods. cMSI score is associated with mismatch repair genotype but not phenotype, suggesting it is not a useful predictor of cancer risk.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Humanos , Neoplasias Colorretais Hereditárias sem Polipose/genética , Instabilidade de Microssatélites , Síndromes Neoplásicas Hereditárias/diagnóstico , Síndromes Neoplásicas Hereditárias/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Encefálicas/diagnóstico , Genótipo , Reparo de Erro de Pareamento de DNA/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética
6.
Cancers (Basel) ; 14(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35954501

RESUMO

Identification of mismatch repair (MMR)-deficient colorectal cancers (CRCs) is recommended for Lynch syndrome (LS) screening, and supports targeting of immune checkpoint inhibitors. Microsatellite instability (MSI) analysis is commonly used to test for MMR deficiency. Testing biopsies prior to tumour resection can inform surgical and therapeutic decisions, but can be limited by DNA quantity. MSI analysis of voided urine could also provide much needed surveillance for genitourinary tract cancers in LS. Here, we reconfigure an existing molecular inversion probe-based MSI and BRAF c.1799T > A assay to a multiplex PCR (mPCR) format, and demonstrate that it can sample >140 unique molecules per marker from <1 ng of DNA and classify CRCs with 96−100% sensitivity and specificity. We also show that it can detect increased MSI within individual and composite CRC biopsies from LS patients, and within preoperative urine cell free DNA (cfDNA) from two LS patients, one with an upper tract urothelial cancer, the other an undiagnosed endometrial cancer. Approximately 60−70% of the urine cfDNAs were tumour-derived. Our results suggest that mPCR sequence-based analysis of MSI and mutation hotspots in CRC biopsies could facilitate presurgery decision making, and could enable postal-based screening for urinary tract and endometrial tumours in LS patients.

8.
Cancers (Basel) ; 13(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499123

RESUMO

International guidelines for the diagnosis of Lynch syndrome (LS) recommend molecular screening of colorectal cancers (CRCs) to identify patients for germline mismatch repair (MMR) gene testing. As our understanding of the LS phenotype and diagnostic technologies have advanced, there is a need to review these guidelines and new screening opportunities. We discuss the barriers to implementation of current guidelines, as well as guideline limitations, and highlight new technologies and knowledge that may address these. We also discuss alternative screening strategies to increase the rate of LS diagnoses. In particular, the focus of current guidance on CRCs means that approximately half of Lynch-spectrum tumours occurring in unknown male LS carriers, and only one-third in female LS carriers, will trigger testing for LS. There is increasing pressure to expand guidelines to include molecular screening of endometrial cancers, the most frequent cancer in female LS carriers. Furthermore, we collate the evidence to support MMR deficiency testing of other Lynch-spectrum tumours to screen for LS. However, a reliance on tumour tissue limits preoperative testing and, therefore, diagnosis prior to malignancy. The recent successes of functional assays to detect microsatellite instability or MMR deficiency in non-neoplastic tissues suggest that future diagnostic pipelines could become independent of tumour tissue.

9.
Genet Med ; 22(12): 2081-2088, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32773772

RESUMO

PURPOSE: Biallelic germline mismatch repair (MMR) gene pathogenic variants (PVs) cause constitutional MMR deficiency (CMMRD), a highly penetrant childhood cancer syndrome phenotypically overlapping with neurofibromatosis type 1 (NF1). CMMRD testing in suspected NF1 children without NF1/SPRED1 PVs enables inclusion of CMMRD positives into monitoring programs prior to tumor onset. However, testing is associated with potential harms and the prevalence of CMMRD among these children is unknown. METHODS: Using a simple and scalable microsatellite instability (MSI) assay of non-neoplastic leukocyte DNA to detect CMMRD, we retrospectively screened >700 children suspected of sporadic NF1 but lacking NF1/SPRED1 PVs. RESULTS: For three of seven MSI-positive patients germline MMR gene PVs confirmed the diagnosis of CMMRD. Founder variants NM_000535.5(PMS2):c.736_741delinsTGTGTGTGAAG, prevalent in Europe and North America, and NM_000179.2(MSH6):c.10C>G, affecting 1:400 French Canadians, represented two of five PVs. The prevalence of CMMRD was 3/735 (0.41%, 95% confidence interval [CI]: 0.08-1.19%). CONCLUSION: Our empirical data provide reliable numbers for genetic counseling and confirm previous prevalence estimations, on which Care for CMMRD consortium guidelines are based. These advocate CMMRD testing of preselected patients rather than offering reflex testing to all suspected sporadic NF1 children lacking NF1/SPRED1 PVs. The possibility of founder effects should be considered alongside these testing guidelines.


Assuntos
Neoplasias Colorretais , Neurofibromatose 1 , Proteínas Adaptadoras de Transdução de Sinal , Neoplasias Encefálicas , Canadá , Criança , Reparo de Erro de Pareamento de DNA/genética , Europa (Continente) , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Síndromes Neoplásicas Hereditárias , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/epidemiologia , Neurofibromatose 1/genética , América do Norte , Estudos Retrospectivos
10.
Nat Genet ; 52(2): 146-159, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32060489

RESUMO

In many repeat diseases, such as Huntington's disease (HD), ongoing repeat expansions in affected tissues contribute to disease onset, progression and severity. Inducing contractions of expanded repeats by exogenous agents is not yet possible. Traditional approaches would target proteins driving repeat mutations. Here we report a compound, naphthyridine-azaquinolone (NA), that specifically binds slipped-CAG DNA intermediates of expansion mutations, a previously unsuspected target. NA efficiently induces repeat contractions in HD patient cells as well as en masse contractions in medium spiny neurons of HD mouse striatum. Contractions are specific for the expanded allele, independently of DNA replication, require transcription across the coding CTG strand and arise by blocking repair of CAG slip-outs. NA-induced contractions depend on active expansions driven by MutSß. NA injections in HD mouse striatum reduce mutant HTT protein aggregates, a biomarker of HD pathogenesis and severity. Repeat-structure-specific DNA ligands are a novel avenue to contract expanded repeats.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/genética , Naftiridinas/farmacologia , Quinolonas/farmacologia , Expansão das Repetições de Trinucleotídeos/efeitos dos fármacos , Animais , Corpo Estriado/efeitos dos fármacos , DNA/metabolismo , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Transgênicos , Instabilidade de Microssatélites , Mutação , Ribonucleases/metabolismo , Proteína de Ligação a TATA-Box/genética , Transcrição Gênica
11.
Hum Mutat ; 41(1): 332-341, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31471937

RESUMO

Microsatellite instability (MSI) testing of colorectal cancers (CRCs) is used to screen for Lynch syndrome (LS), a hereditary cancer-predisposition, and can be used to predict response to immunotherapy. Here, we present a single-molecule molecular inversion probe and sequencing-based MSI assay and demonstrate its clinical validity according to existing guidelines. We amplified 24 microsatellites in multiplex and trained a classifier using 98 CRCs, which accommodates marker specific sensitivities to MSI. Sample classification achieved 100% concordance with the MSI Analysis System v1.2 (Promega) in three independent cohorts, totaling 220 CRCs. Backward-forward stepwise selection was used to identify a 6-marker subset of equal accuracy to the 24-marker panel. Assessment of assay detection limits showed that the 24-marker panel is marginally more robust to sample variables than the 6-marker subset, detecting as little as 3% high levels of MSI DNA in sample mixtures, and requiring a minimum of 10 template molecules to be sequenced per marker for >95% accuracy. BRAF c.1799 mutation analysis was also included to streamline LS testing, with all c.1799T>A variants being correctly identified. The assay, therefore, provides a cheap, robust, automatable, and scalable MSI test with internal quality controls, suitable for clinical cancer diagnostics.


Assuntos
Marcadores Genéticos , Predisposição Genética para Doença , Testes Genéticos , Ensaios de Triagem em Larga Escala , Instabilidade de Microssatélites , Repetições de Microssatélites , Alelos , Biomarcadores Tumorais , Linhagem Celular , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Reparo de Erro de Pareamento de DNA , Estudos de Associação Genética/métodos , Testes Genéticos/métodos , Testes Genéticos/normas , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/normas , Humanos , Técnicas de Diagnóstico Molecular , Fosforilação , Reprodutibilidade dos Testes
12.
J Am Acad Dermatol ; 81(6): 1300-1307, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31085270

RESUMO

BACKGROUND: Clusters of rare cylindroma or spiradenoma tumors are a recurrent clinical presentation, yet conventional genetic testing results in individuals with these tumors are frequently normal. OBJECTIVE: To determine if genetic mosaicism accounts for such cases. METHODS: A study of 6 cases from a series of 55 patients who met criteria for diagnostic gene testing for pathogenic CYLD variants over a 5-year period (2012-2017) was performed. A novel genetic assay was used to study DNA from peripheral blood leukocytes and, where possible, matched skin and tumor tissue. RESULTS: Two patients had mosaic pathogenic CYLD variants in both the blood and skin. One of these patients transmitted a pathogenic variant to her daughter, and we report the novel phenotype of a contiguous gene deletion syndrome involving CYLD. Two patients had recurrent pathogenic variants in skin tumors from a single cluster but none detectable in the blood. LIMITATIONS: The remaining 2 patients had clinical features of mosaicism, but these cases were not solved with the assays used because of a lack of access of fresh tumor tissue. CONCLUSION: Genetic mosaicism should be considered in patients presenting with clustered cylindromas, because this may inform genetic testing and counseling of these patients.


Assuntos
Carcinoma Adenoide Cístico/patologia , Enzima Desubiquitinante CYLD/genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa/genética , Síndromes Neoplásicas Hereditárias/genética , Neoplasias Cutâneas/patologia , Adulto , Idoso , Carcinoma Adenoide Cístico/genética , Diagnóstico Diferencial , Humanos , Pessoa de Meia-Idade , Mosaicismo , Síndromes Neoplásicas Hereditárias/epidemiologia , Reação em Cadeia da Polimerase/métodos , Prognóstico , Estudos Retrospectivos , Estudos de Amostragem , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/genética
13.
Hum Mutat ; 40(5): 649-655, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30740824

RESUMO

Constitutional mismatch repair deficiency (CMMRD) is caused by germline pathogenic variants in both alleles of a mismatch repair gene. Patients have an exceptionally high risk of numerous pediatric malignancies and benefit from surveillance and adjusted treatment. The diversity of its manifestation, and ambiguous genotyping results, particularly from PMS2, can complicate diagnosis and preclude timely patient management. Assessment of low-level microsatellite instability in nonneoplastic tissues can detect CMMRD, but current techniques are laborious or of limited sensitivity. Here, we present a simple, scalable CMMRD diagnostic assay. It uses sequencing and molecular barcodes to detect low-frequency microsatellite variants in peripheral blood leukocytes and classifies samples using variant frequencies. We tested 30 samples from 26 genetically-confirmed CMMRD patients, and samples from 94 controls and 40 Lynch syndrome patients. All samples were correctly classified, except one from a CMMRD patient recovering from aplasia. However, additional samples from this same patient tested positive for CMMRD. The assay also confirmed CMMRD in six suspected patients. The assay is suitable for both rapid CMMRD diagnosis within clinical decision windows and scalable screening of at-risk populations. Its deployment will improve patient care, and better define the prevalence and phenotype of this likely underreported cancer syndrome.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Reparo de Erro de Pareamento de DNA , Estudos de Associação Genética , Predisposição Genética para Doença , Leucócitos/metabolismo , Instabilidade de Microssatélites , Síndromes Neoplásicas Hereditárias/diagnóstico , Síndromes Neoplásicas Hereditárias/genética , Alelos , Estudos de Associação Genética/métodos , Mutação em Linhagem Germinativa , Humanos , Repetições de Microssatélites
14.
PLoS One ; 13(8): e0203052, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30157243

RESUMO

Somatic mutations in mononucleotide repeats are commonly used to assess the mismatch repair status of tumours. Current tests focus on repeats with a length above 15bp, which tend to be somatically more unstable than shorter ones. These longer repeats also have a substantially higher PCR error rate, and tests that use capillary electrophoresis for fragment size analysis often require expert interpretation. In this communication, we present a panel of 17 short repeats (length 7-12bp) for sequence-based microsatellite instability (MSI) testing. Using a simple scoring procedure that incorporates the allelic distribution of the mutant repeats, and analysis of two cohort of tumours totalling 209 samples, we show that this panel is able to discriminate between MMR proficient and deficient tumours, even when constitutional DNA is not available. In the training cohort, the method achieved 100% concordance with fragment analysis, while in the testing cohort, 4 discordant samples were observed (corresponding to 97% concordance). Of these, 2 showed discrepancies between fragment analysis and immunohistochemistry and one was reclassified after re-testing using fragment analysis. These results indicate that our approach offers the option of a reliable, scalable routine test for MSI.


Assuntos
Neoplasias Colorretais/genética , Reparo de Erro de Pareamento de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Instabilidade de Microssatélites , Repetições de Microssatélites , Polimorfismo Genético , Biomarcadores Tumorais/genética , Estudos de Coortes , Simulação por Computador , Fixadores , Formaldeído , Frequência do Gene , Humanos , Inclusão em Parafina , Fixação de Tecidos
15.
PLoS One ; 13(2): e0192223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29425227

RESUMO

Regular aspirin use is associated with reduced risk of colorectal cancer (CRC). Variation in aspirin's chemoprevention efficacy has been attributed to the presence of single nucleotide polymorphisms (SNPs). We conducted a meta-analysis using two large population-based case-control datasets, the UK-Leeds Colorectal Cancer Study Group and the NIH-Colon Cancer Family Registry, having a combined total of 3325 cases and 2262 controls. The aim was to assess 42 candidate SNPs in 15 genes whose association with colorectal cancer risk was putatively modified by aspirin use, in the literature. Log odds ratios (ORs) and standard errors were estimated for each dataset separately using logistic regression adjusting for age, sex and study site, and dataset-specific results were combined using random effects meta-analysis. Meta-analysis showed association between SNPs rs6983267, rs11694911 and rs2302615 with CRC risk reduction (All P<0.05). Association for SNP rs6983267 in the CCAT2 gene only was noteworthy after multiple test correction (P = 0.001). Site-specific analysis showed association between SNPs rs1799853 and rs2302615 with reduced colon cancer risk only (P = 0.01 and P = 0.004, respectively), however neither reached significance threshold following multiple test correction. Meta-analysis of SNPs rs2070959 and rs1105879 in UGT1A6 gene showed interaction between aspirin use and CRC risk (Pinteraction = 0.01 and 0.02, respectively); stratification by aspirin use showed an association for decreased CRC risk for aspirin users having a wild-type genotype (rs2070959 OR = 0.77, 95% CI = 0.68-0.86; rs1105879 OR = 0.77 95% CI = 0.69-0.86) compared to variant allele cariers. The direction of the interaction however is in contrast to that published in studies on colorectal adenomas. Both SNPs showed potential site-specific interaction with aspirin use and colon cancer risk only (Pinteraction = 0.006 and 0.008, respectively), with the direction of association similar to that observed for CRC. Additionally, they showed interaction between any non-steroidal anti-inflammatory drugs (including aspirin) use and CRC risk (Pinteraction = 0.01 for both). All gene x environment (GxE) interactions however were not significant after multiple test correction. Candidate gene investigation indicated no evidence of GxE interaction between genetic variants in genes involved in aspirin pathways, regular aspirin use and colorectal cancer risk.


Assuntos
Aspirina/metabolismo , Neoplasias Colorretais/epidemiologia , Polimorfismo de Nucleotídeo Único , População Branca , Aspirina/administração & dosagem , Austrália/epidemiologia , Canadá/epidemiologia , Estudos de Casos e Controles , Neoplasias Colorretais/prevenção & controle , Humanos , Fatores de Risco , Estados Unidos/epidemiologia
16.
Sci Rep ; 7(1): 14595, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29097723

RESUMO

Vesicoureteric reflux (VUR) is the commonest urological anomaly in children. Despite treatment improvements, associated renal lesions - congenital dysplasia, acquired scarring or both - are a common cause of childhood hypertension and renal failure. Primary VUR is familial, with transmission rate and sibling risk both approaching 50%, and appears highly genetically heterogeneous. It is often associated with other developmental anomalies of the urinary tract, emphasising its etiology as a disorder of urogenital tract development. We conducted a genome-wide linkage and association study in three European populations to search for loci predisposing to VUR. Family-based association analysis of 1098 parent-affected-child trios and case/control association analysis of 1147 cases and 3789 controls did not reveal any compelling associations, but parametric linkage analysis of 460 families (1062 affected individuals) under a dominant model identified a single region, on 10q26, that showed strong linkage (HLOD = 4.90; ZLRLOD = 4.39) to VUR. The ~9Mb region contains 69 genes, including some good biological candidates. Resequencing this region in selected individuals did not clearly implicate any gene but FOXI2, FANK1 and GLRX3 remain candidates for further investigation. This, the largest genetic study of VUR to date, highlights the 10q26 region as a major genetic contributor to VUR in European populations.


Assuntos
Cromossomos Humanos Par 10 , Refluxo Vesicoureteral/genética , Estudos de Casos e Controles , Células Cultivadas , Família , Feminino , Ligação Genética , Loci Gênicos , Testes Genéticos , Estudo de Associação Genômica Ampla , Humanos , Masculino , População Branca/genética
17.
PLoS One ; 11(7): e0159024, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27391021

RESUMO

The single nucleotide polymorphism (SNP) rs835487 is associated with hip osteoarthritis (OA) at the genome-wide significance level and is located within CHST11, which codes for carbohydrate sulfotransferase 11. This enzyme post-translationally modifies proteoglycan prior to its deposition in the cartilage extracellular matrix. Using bioinformatics and experimental analyses, our aims were to characterise the rs835487 association signal and to identify the causal functional variant/s. Database searches revealed that rs835487 resides within a linkage disequilibrium (LD) block of only 2.7 kb and is in LD (r2 ≥ 0.8) with six other SNPs. These are all located within intron 2 of CHST11, in a region that has predicted enhancer activity and which shows a high degree of conservation in primates. Luciferase reporter assays revealed that of the seven SNPs, rs835487 and rs835488, which have a pairwise r2 of 0.962, are the top functional candidates; the haplotype composed of the OA-risk conferring G allele of rs835487 and the corresponding T allele of rs835488 (the G-T haplotype) demonstrated significantly different enhancer activity relative to the haplotype composed of the non-risk A allele of rs835487 and the corresponding C allele of rs835488 (the A-C haplotype) (p < 0.001). Electrophoretic mobility shift assays and supershifts identified several transcription factors that bind more strongly to the risk-conferring G and T alleles of the two SNPs, including SP1, SP3, YY1 and SUB1. CHST11 was found to be upregulated in OA versus non-OA cartilage (p < 0.001) and was expressed dynamically during chondrogenesis. Its expression in adult cartilage did not however correlate with rs835487 genotype. Our data demonstrate that the OA susceptibility is mediated by differential protein binding to the alleles of rs835487 and rs835488, which are located within an enhancer whose target may be CHST11 during chondrogenesis or an alternative gene.


Assuntos
Condrogênese/genética , Predisposição Genética para Doença , Íntrons , Osteoartrite do Quadril/genética , Polimorfismo de Nucleotídeo Único , Sulfotransferases/genética , Alelos , Animais , Cartilagem/enzimologia , Cartilagem/patologia , Linhagem Celular Tumoral , Biologia Computacional , Bases de Dados de Ácidos Nucleicos , Estudo de Associação Genômica Ampla , Haplótipos , Humanos , Osteoartrite do Quadril/enzimologia , Osteoartrite do Quadril/patologia , Sulfotransferases/metabolismo
18.
Blood ; 125(4): 591-9, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25359994

RESUMO

Germline loss-of-function mutations in the transcription factor signal transducer and activator of transcription 3 (STAT3) cause immunodeficiency, whereas somatic gain-of-function mutations in STAT3 are associated with large granular lymphocytic leukemic, myelodysplastic syndrome, and aplastic anemia. Recently, germline mutations in STAT3 have also been associated with autoimmune disease. Here, we report on 13 individuals from 10 families with lymphoproliferation and early-onset solid-organ autoimmunity associated with 9 different germline heterozygous mutations in STAT3. Patients exhibited a variety of clinical features, with most having lymphadenopathy, autoimmune cytopenias, multiorgan autoimmunity (lung, gastrointestinal, hepatic, and/or endocrine dysfunction), infections, and short stature. Functional analyses demonstrate that these mutations confer a gain-of-function in STAT3 leading to secondary defects in STAT5 and STAT1 phosphorylation and the regulatory T-cell compartment. Treatment targeting a cytokine pathway that signals through STAT3 led to clinical improvement in 1 patient, suggesting a potential therapeutic option for such patients. These results suggest that there is a broad range of autoimmunity caused by germline STAT3 gain-of-function mutations, and that hematologic autoimmunity is a major component of this newly described disorder. Some patients for this study were enrolled in a trial registered at www.clinicaltrials.gov as #NCT00001350.


Assuntos
Doenças Autoimunes/genética , Doenças Genéticas Inatas/genética , Transtornos Linfoproliferativos/genética , Fator de Transcrição STAT3/genética , Adolescente , Adulto , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Criança , Pré-Escolar , Feminino , Doenças Genéticas Inatas/imunologia , Doenças Genéticas Inatas/patologia , Humanos , Lactente , Transtornos Linfoproliferativos/imunologia , Transtornos Linfoproliferativos/patologia , Masculino , Mutação , Fosforilação/genética , Fosforilação/imunologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT3/imunologia , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
19.
Nat Commun ; 5: 4760, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25208576

RESUMO

Alternative splicing--the production of multiple messenger RNA isoforms from a single gene--is regulated in part by RNA binding proteins. While the RBPs transformer2 alpha (Tra2α) and Tra2ß have both been implicated in the regulation of alternative splicing, their relative contributions to this process are not well understood. Here we find simultaneous--but not individual--depletion of Tra2α and Tra2ß induces substantial shifts in splicing of endogenous Tra2ß target exons, and that both constitutive and alternative target exons are under dual Tra2α-Tra2ß control. Target exons are enriched in genes associated with chromosome biology including CHEK1, which encodes a key DNA damage response protein. Dual Tra2 protein depletion reduces expression of full-length CHK1 protein, results in the accumulation of the DNA damage marker γH2AX and decreased cell viability. We conclude Tra2 proteins jointly control constitutive and alternative splicing patterns via paralog compensation to control pathways essential to the maintenance of cell viability.


Assuntos
Processamento Alternativo , Éxons , Proteínas do Tecido Nervoso/metabolismo , Proteínas Quinases/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Humanos , Células MCF-7 , Proteínas Quinases/metabolismo , Fatores de Processamento de Serina-Arginina
20.
PLoS Genet ; 10(6): e1004424, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24901367

RESUMO

Identifying the genetic basis for mitochondrial diseases is technically challenging given the size of the mitochondrial proteome and the heterogeneity of disease presentations. Using next-generation exome sequencing, we identified in a patient with severe combined mitochondrial respiratory chain defects and corresponding perturbation in mitochondrial protein synthesis, a homozygous p.Arg323Gln mutation in TRIT1. This gene encodes human tRNA isopentenyltransferase, which is responsible for i6A37 modification of the anticodon loops of a small subset of cytosolic and mitochondrial tRNAs. Deficiency of i6A37 was previously shown in yeast to decrease translational efficiency and fidelity in a codon-specific manner. Modelling of the p.Arg323Gln mutation on the co-crystal structure of the homologous yeast isopentenyltransferase bound to a substrate tRNA, indicates that it is one of a series of adjacent basic side chains that interact with the tRNA backbone of the anticodon stem, somewhat removed from the catalytic center. We show that patient cells bearing the p.Arg323Gln TRIT1 mutation are severely deficient in i6A37 in both cytosolic and mitochondrial tRNAs. Complete complementation of the i6A37 deficiency of both cytosolic and mitochondrial tRNAs was achieved by transduction of patient fibroblasts with wild-type TRIT1. Moreover, we show that a previously-reported pathogenic m.7480A>G mt-tRNASer(UCN) mutation in the anticodon loop sequence A36A37A38 recognised by TRIT1 causes a loss of i6A37 modification. These data demonstrate that deficiencies of i6A37 tRNA modification should be considered a potential mechanism of human disease caused by both nuclear gene and mitochondrial DNA mutations while providing insight into the structure and function of TRIT1 in the modification of cytosolic and mitochondrial tRNAs.


Assuntos
Alquil e Aril Transferases/genética , Doenças Mitocondriais/genética , Sulfurtransferases/genética , Células Cultivadas , Deficiência de Citocromo-c Oxidase/genética , Citosol , DNA Mitocondrial/genética , Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Humanos , Masculino , Mitocôndrias/genética , Biossíntese de Proteínas/genética , RNA/genética , RNA Mitocondrial , RNA de Transferência/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA