Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4018, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740820

RESUMO

Anti-HSV therapies are only suppressive because they do not eliminate latent HSV present in ganglionic neurons, the source of recurrent disease. We have developed a potentially curative approach against HSV infection, based on gene editing using HSV-specific meganucleases delivered by adeno-associated virus (AAV) vectors. Gene editing performed with two anti-HSV-1 meganucleases delivered by a combination of AAV9, AAV-Dj/8, and AAV-Rh10 can eliminate 90% or more of latent HSV DNA in mouse models of orofacial infection, and up to 97% of latent HSV DNA in mouse models of genital infection. Using a pharmacological approach to reactivate latent HSV-1, we demonstrate that ganglionic viral load reduction leads to a significant decrease of viral shedding in treated female mice. While therapy is well tolerated, in some instances, we observe hepatotoxicity at high doses and subtle histological evidence of neuronal injury without observable neurological signs or deficits. Simplification of the regimen through use of a single serotype (AAV9) delivering single meganuclease targeting a duplicated region of the HSV genome, dose reduction, and use of a neuron-specific promoter each results in improved tolerability while retaining efficacy. These results reinforce the curative potential of gene editing for HSV disease.


Assuntos
Dependovirus , Edição de Genes , Herpes Simples , Herpesvirus Humano 1 , Carga Viral , Eliminação de Partículas Virais , Animais , Edição de Genes/métodos , Feminino , Dependovirus/genética , Camundongos , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Herpes Simples/genética , Herpes Simples/virologia , Herpes Simples/terapia , Modelos Animais de Doenças , Latência Viral/genética , Humanos , Vetores Genéticos/genética , Células Vero , Terapia Genética/métodos , Herpes Genital/terapia , Herpes Genital/virologia , DNA Viral/genética
2.
Microbiol Spectr ; 11(3): e0517622, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199630

RESUMO

Hepatitis B virus (HBV) is a pathogen of major public health importance that is largely incurable once a chronic infection is established. Only humans and great apes are fully permissive to HBV infection, and this species restriction has impacted HBV research by limiting the utility of small animal models. To combat HBV species restrictions and enable more in vivo studies, liver-humanized mouse models have been developed that are permissive to HBV infection and replication. Unfortunately, these models can be difficult to establish and are expensive commercially, which has limited their academic use. As an alternative mouse model to study HBV, we evaluated liver-humanized NSG-PiZ mice and showed that they are fully permissive to HBV. HBV selectively replicates in human hepatocytes within chimeric livers, and HBV-positive (HBV+) mice secrete infectious virions and hepatitis B surface antigen (HBsAg) into blood while also harboring covalently closed circular DNA (cccDNA). HBV+ mice develop chronic infections lasting at least 169 days, which should enable the study of new curative therapies targeting chronic HBV, and respond to entecavir therapy. Furthermore, HBV+ human hepatocytes in NSG-PiZ mice can be transduced by AAV3b and AAV.LK03 vectors, which should enable the study of gene therapies that target HBV. In summary, our data demonstrate that liver-humanized NSG-PiZ mice can be used as a robust and cost-effective alternative to existing chronic hepatitis B (CHB) models and may enable more academic research labs to study HBV disease pathogenesis and antiviral therapy. IMPORTANCE Liver-humanized mouse models have become the gold standard for the in vivo study of hepatitis B virus (HBV), yet their complexity and cost have prohibited widespread use of existing models in research. Here, we show that the NSG-PiZ liver-humanized mouse model, which is relatively inexpensive and simple to establish, can support chronic HBV infection. Infected mice are fully permissive to hepatitis B, supporting both active replication and spread, and can be used to study novel antiviral therapies. This model is a viable and cost-effective alternative to other liver-humanized mouse models that are used to study HBV.


Assuntos
Hepatite B Crônica , Hepatite B , Camundongos , Humanos , Animais , Hepatite B Crônica/tratamento farmacológico , Vírus da Hepatite B/genética , Hepatite B/tratamento farmacológico , Antígenos de Superfície da Hepatite B , Antivirais/uso terapêutico , DNA Circular/uso terapêutico , DNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA