Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34352398

RESUMO

Dissolved organic carbon (DOC) is known to ameliorate the toxicity of the trace metal nickel (Ni) to aquatic animals. In theory, this effect is mediated by the capacity of DOC to bind Ni, rendering it less bioavailable, with the resulting reduction in accumulation limiting toxicological effects. However, there is a lack of experimental data examining Ni accumulation in marine settings with natural sources of DOC. In the current study, radiolabelled Ni was used to examine the time- and concentration-dependence of Ni accumulation, using naturally sourced DOC, on developing larvae of the sea urchin Strongylocentrotus purpuratus. Contrary to prediction, the two tested natural DOC samples (collected from the eastern United States, DOC 2 (Seaview park, Rhode Island (SVP)) and DOC 7 (Aubudon Coastal Center, Connecticut)) which had previously been shown to protect against Ni toxicity, did not limit accumulation. The control (artificial seawater with no added DOC), and the DOC 2 sample could mostly be described as having saturable Ni uptake, whereas Ni uptake in the presence of DOC 7 was mostly linear. These data provide evidence that DOC modifies the bioavailability of Ni, through either indirect effects (e.g. membrane permeability) or by the absorption of DOC-Ni complexes. There was some evidence for regulation of Ni accumulation in later-stage embryos (96-h) where the bioconcentration factor for Ni declined with increasing Ni exposure concentration. These data have implications for predictive modelling approaches that rely on known relationships between Ni speciation, bioavailability and bioreactivity, by suggesting that these relationships may not hold for natural marine DOC samples in the developing sea urchin model system.


Assuntos
Matéria Orgânica Dissolvida/farmacologia , Níquel/farmacocinética , Strongylocentrotus purpuratus/efeitos dos fármacos , Animais , Larva , Strongylocentrotus purpuratus/crescimento & desenvolvimento , Strongylocentrotus purpuratus/metabolismo , Poluentes Químicos da Água/farmacologia
2.
Environ Toxicol Chem ; 40(11): 3049-3062, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34297851

RESUMO

We studied biotic ligand model (BLM) predictions of the toxicity of nickel (Ni) and zinc (Zn) in natural waters from Illinois and Minnesota, USA, which had combinations of pH, hardness, and dissolved organic carbon (DOC) more extreme than 99.7% of waters in a nationwide database. We conducted 7-day chronic tests with Ceriodaphnia dubia and 96-hour acute and 14-day chronic tests with Neocloeon triangulifer and estimated median lethal concentrations and 20% effect concentrations for both species. Toxicity of Ni and Zn to both species differed among test waters by factors from 8 (Zn tests with C. dubia) to 35 (Zn tests with N. triangulifer). For both species and metals, tests with Minnesota waters (low pH and hardness, high DOC) showed lower toxicity than Illinois waters (high pH and high hardness, low DOC). Recalibration of the Ni BLM to be more responsive to pH-related changes improved predictions of Ni toxicity, especially for C. dubia. For the Zn BLM, we compared several input data scenarios, which generally had minor effects on model performance scores (MPS). A scenario that included inputs of modeled dissolved inorganic carbon and measured Al and Fe(III) produced the highest MPS values for tests with both C. dubia and N. triangulifer. Overall, the BLM framework successfully modeled variation in toxicity for both Zn and Ni across wide ranges of water chemistry in tests with both standard and novel test organisms. Environ Toxicol Chem 2021;40:3049-3062. © 2021 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Assuntos
Cladocera , Ephemeroptera , Poluentes Químicos da Água , Animais , Disponibilidade Biológica , Compostos Férricos , Níquel/toxicidade , Compostos Orgânicos , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade
3.
Environ Toxicol Chem ; 40(8): 2121-2134, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33945644

RESUMO

A review of nickel (Ni) toxicity to aquatic organisms was conducted to determine the primary water quality factors that affect Ni toxicity and to provide information for the development and testing of a biotic ligand model (BLM) for Ni. Acute and chronic data for 66 aquatic species were compiled for the present review. The present review found that dissolved organic carbon (DOC) and hardness act as toxicity-modifying factors (TMFs) because they reduced Ni toxicity to fish and aquatic invertebrates, and these effects were consistent in acute and chronic exposures. The effects of pH on Ni toxicity were inconsistent, and for most organisms there was either no effect of pH or, in some cases, a reduction in toxicity at low pH. There appears to be a unique pH effect on Ceriodaphnia dubia that results in increased toxicity at pHs above 8, but otherwise the effects of TMFs were consistent enough across all organisms and endpoints that a single set of parameters in the Ni BLM worked well with all acute and chronic toxicity data for fish, amphibians, aquatic invertebrates, and aquatic plants and algae. The unique effects of pH on C. dubia may be due to mixture toxicity involving both Ni and bicarbonate. The implications of this mixture effect on BLM modeling and a proposed set of BLM parameters for C. dubia are addressed in the review. Other than this exception, the Ni BLM with a single set of parameters could successfully predict toxicity to all acute and chronic data compiled in the present review. Environ Toxicol Chem 2021;40:2121-2134. © 2021 SETAC.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Animais , Organismos Aquáticos , Disponibilidade Biológica , Peixes , Água Doce/química , Invertebrados , Ligantes , Níquel/toxicidade , Testes de Toxicidade Crônica , Poluentes Químicos da Água/toxicidade
4.
Environ Toxicol Chem ; 40(8): 2189-2205, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33847411

RESUMO

Toxicity-modifying factors can be modeled either empirically with linear regression models or mechanistically, such as with the biotic ligand model (BLM). The primary factors affecting the toxicity of nickel to aquatic organisms are hardness, dissolved organic carbon (DOC), and pH. Interactions between these terms were also considered. The present study develops multiple linear regressions (MLRs) with stepwise regression for 5 organisms in acute exposures, 4 organisms in chronic exposures, and pooled models for acute, chronic, and all data and compares the performance of the Pooled All MLR model to the performance of the BLM. Independent validation data were used for evaluating model performance, which for pooled models included data for organisms and endpoints not present in the calibration data set. Hardness and DOC were most often selected as the explanatory variables in the MLR models. An attempt was also made at evaluating the uncertainty of the predictions for each model; predictions that showed the most error tended to show the highest levels of uncertainty as well. The performances of the 2 models were largely equal, with differences becoming more apparent when looking at the performance within subsets of the data. Environ Toxicol Chem 2021;40:2189-2205. © 2021 SETAC.


Assuntos
Organismos Aquáticos , Poluentes Químicos da Água , Água Doce/química , Ligantes , Modelos Lineares , Níquel/toxicidade , Poluentes Químicos da Água/toxicidade
5.
Integr Environ Assess Manag ; 15(6): 974-987, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31218828

RESUMO

A large water quality data set, representing more than 100 surface-water locations sampled from 2007 to 2017 in the Los Alamos area of New Mexico, USA's Pajarito Plateau, was assembled to evaluate Al concentrations in unfiltered and filtered samples. Aluminum concentrations often exceeded United States Environmental Protection Agency (USEPA) and New Mexico ambient water quality criteria (AWQC), regardless of filter size and sample location. However, AWQC are based on laboratory toxicity studies using soluble Al salts and do not reflect natural conditions in Pajarito Plateau surface waters. The plateau is predominately covered by glassy and recrystallized volcanic ashes (e.g., Bandelier Tuff) containing colloidal to sand-sized aluminosilicates. Samples from natural background drainages and areas downstream of developed regions exhibited similar Al concentrations, suggesting that AWQC exceedances are caused by naturally elevated Al concentrations. Solubility calculations indicated that most samples were oversaturated with respect to amorphous Al(OH)3 (s). Therefore, AWQC exceedances are likely artifacts of the "total recoverable" sample preparation, which includes acidification and partial digestion, thereby liberating nonbioavailable Al from aluminosilicates. Accordingly, Al concentrations were strongly associated with suspended sediment concentrations (SSCs), implying that aluminosilicates in suspended sediment contributed to AWQC exceedances and Al oversaturation. Solid-phase particle characterization, using X-ray diffraction (XRD) and scanning electron microscopy with electron dispersive spectroscopy (SEM/EDS) did not identify potentially bioavailable amorphous Al(OH)3 (s) in any sample tested. Thus, current sample collection and analysis protocols should not be used to evaluate attainment of Al AWQC on the Pajarito Plateau or locations where aluminosilicates are substantial contributors to total recoverable Al. A sample preparation method (e.g., pH 4 extraction) capable of differentiating nonbioavailable and bioavailable forms of Al is recommended. Otherwise, current New Mexico and USEPA sample preparation approaches will continue to generate artifactual AWQC exceedances in surface waters that contain aluminosilicates. Integr Environ Assess Manag 2019;00:1-14. © 2019 SETAC.


Assuntos
Compostos de Alumínio/análise , Alumínio/análise , Monitoramento Ambiental/métodos , Rios/química , Poluentes Químicos da Água/análise , Qualidade da Água/normas , New Mexico
6.
Environ Toxicol Chem ; 37(1): 36-48, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28667768

RESUMO

The chemistry, bioavailability, and toxicity of aluminum (Al) in the aquatic environment are complex and affected by a wide range of water quality characteristics (including pH, hardness, and dissolved organic carbon). Data gaps in Al ecotoxicology exist for pH ranges representative of natural surface waters (pH 6-8). To address these gaps, a series of chronic toxicity tests were performed at pH 6 with 8 freshwater species, including 2 fish (Pimephales promelas and Danio rerio), an oligochaete (Aeolosoma sp.), a rotifer (Brachionus calyciflorus), a snail (Lymnaea stagnalis), an amphipod (Hyalella azteca), a midge (Chironomus riparius), and an aquatic plant (Lemna minor). The 10% effect concentrations (EC10s) ranged from 98 µg total Al/L for D. rerio to 2175 µg total Al/L for L. minor. From these data and additional published data, species-sensitivity distributions (SSDs) were developed to derive concentrations protective of 95% of tested species (i.e., 50% lower confidence limit of a 5th percentile hazard concentration [HC5-50]). A generic HC5-50 (not adjusted for bioavailability) of 74.4 µg total Al/L was estimated using the SSD. An Al-specific biotic ligand model (BLM) was used to develop SSDs normalized for bioavailability based on site-specific water quality characteristics. Normalized HC5-50s ranged from 93.7 to 534 µg total Al/L for waters representing a range of European ecoregions, whereas a chronic HC5 calculated using US Environmental Protection Agency aquatic life criteria methods (i.e., a continuous criterion concentration [CCC]) was 125 µg total Al/L when normalized to Lake Superior water in the United States. The HC5-50 and CCC values for site-specific waters other than those in the present study can be obtained using the Al BLM. Environ Toxicol Chem 2018;37:36-48. © 2017 SETAC.


Assuntos
Alumínio/toxicidade , Organismos Aquáticos/fisiologia , Água Doce , Testes de Toxicidade Crônica , Animais , Organismos Aquáticos/efeitos dos fármacos , Disponibilidade Biológica , Concentração de Íons de Hidrogênio , Padrões de Referência , Poluentes Químicos da Água/toxicidade , Qualidade da Água
7.
Environ Toxicol Chem ; 37(1): 70-79, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29080370

RESUMO

Aluminum (Al) toxicity to aquatic organisms is strongly affected by water chemistry. Toxicity-modifying factors such as pH, dissolved organic carbon (DOC), hardness, and temperature have a large impact on the bioavailability and toxicity of Al to aquatic organisms. The importance of water chemistry on the bioavailability and toxicity of Al suggests that interactions between Al and chemical constituents in exposures to aquatic organisms can affect the form and reactivity of Al, thereby altering the extent to which it interacts with biological membranes. These types of interactions have previously been observed in the toxicity data for other metals, which have been well described by the biotic ligand model (BLM) framework. In BLM applications to other metals (including cadmium, cobalt, copper, lead, nickel, silver, and zinc), these interactions have focused on dissolved metal. A review of Al toxicity data shows that concentrations of Al that cause toxicity are frequently in excess of solubility limitations. Aluminum solubility is strongly pH dependent, with a solubility minimum near pH 6 and increasing at both lower and higher pH values. For the Al BLM, the mechanistic framework has been extended to consider toxicity resulting from a combination of dissolved and precipitated Al to recognize the solubility limitation. The resulting model can effectively predict toxicity to fish, invertebrates, and algae over a wide range of conditions. Environ Toxicol Chem 2018;37:70-79. © 2017 SETAC.


Assuntos
Alumínio/toxicidade , Organismos Aquáticos/fisiologia , Modelos Teóricos , Testes de Toxicidade Crônica , Animais , Organismos Aquáticos/efeitos dos fármacos , Precipitação Química , Peixes/fisiologia , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Substâncias Húmicas/análise , Invertebrados/efeitos dos fármacos , Invertebrados/fisiologia , Ligantes , Solubilidade , Água/química , Poluentes Químicos da Água/toxicidade
8.
Environ Toxicol Chem ; 37(1): 49-60, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28833434

RESUMO

Although it is well known that increasing water hardness and dissolved organic carbon (DOC) concentrations mitigate the toxicity of aluminum (Al) to freshwater organisms in acidic water (i.e., pH < 6), these effects are less well characterized in natural waters at circumneutral pHs for which most aquatic life regulatory protection criteria apply (i.e., pH 6-8). The evaluation of Al toxicity under varying pH conditions may also be confounded by the presence of Al hydroxides and freshly precipitated Al in newly prepared test solutions. Aging and filtration of test solutions were found to greatly reduce toxicity, suggesting that toxicity from transient forms of Al could be minimized and that precipitated Al hydroxides contribute significantly to Al toxicity under circumneutral conditions, rather than dissolved or monomeric forms. Increasing pH, hardness, and DOC were found to have a protective effect against Al toxicity for fish (Pimephales promelas) and invertebrates (Ceriodaphnia dubia, Daphnia magna). For algae (Pseudokirchneriella subcapitata), the protective effects of increased hardness were only apparent at pH 6, less so at pH 7, and at pH 8, increased hardness appeared to increase the sensitivity of algae to Al. The results support the need for water quality-based aquatic life protection criteria for Al, rather than fixed value criteria, as being a more accurate predictor of Al toxicity in natural waters. Environ Toxicol Chem 2018;37:49-60. © 2017 SETAC.


Assuntos
Alumínio/toxicidade , Organismos Aquáticos/fisiologia , Carbono/análise , Água Doce , Compostos Orgânicos/análise , Animais , Organismos Aquáticos/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Cladocera/efeitos dos fármacos , Cladocera/fisiologia , Cyprinidae/fisiologia , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Dureza , Concentração de Íons de Hidrogênio , Invertebrados/efeitos dos fármacos , Invertebrados/fisiologia , Solubilidade , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Poluentes Químicos da Água/toxicidade , Qualidade da Água
9.
Environ Sci Pollut Res Int ; 21(13): 8176-87, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24920427

RESUMO

Populations of white sturgeon (Acipenser transmontanus) are in decline in North America. This is attributed, primarily, to poor recruitment, and white sturgeon are listed as threatened or endangered in several parts of British Columbia, Canada, and the United States. In the Columbia River, effects of metals have been hypothesized as possible contributing factors. Previous work has demonstrated that early life stage white sturgeon are particularly sensitive to certain metals, and concerns over the level of protectiveness of water quality standards are justified. Here we report results from acute (96-h) toxicity tests for copper (Cu), cadmium (Cd), zinc (Zn), and lead (Pb) from parallel studies that were conducted in laboratory water and in the field with Columbia River water. Water effect ratios (WERs) and sensitivity parameters (i.e., median lethal accumulations, or LA50s) were calculated to assess relative bioavailability of these metals in Columbia River water compared to laboratory water, and to elucidate possible differences in sensitivity of early life stage white sturgeon to the same concentrations of metals when tested in the different water sources. For Cu and Pb, white sturgeon toxicity tests were initiated at two life stages, 8 and 40 days post-hatch (dph), and median lethal concentrations (LC50s) ranged between 9-25 µg Cu/L and 177-1,556 µg Pb/L. LC50s for 8 dph white sturgeon exposed to Cd in laboratory water and river water were 14.5 and 72 µg/L, respectively. Exposure of 8 dph white sturgeon to Zn in laboratory and river water resulted in LC50s of 150 and 625 µg/L, respectively. Threshold concentrations were consistently less in laboratory water compared with river water, and as a result, WERs were greater than 1 in all cases. In addition, LA50s were consistently greater in river water exposures compared with laboratory exposures in all paired tests. These results, in combination with results from the biotic ligand model, suggest that the observed differences in toxicity between river water exposures and laboratory water exposures were not entirely due to differences in water quality and metal bioavailability but rather in combination with differences in fish sensitivity. It is hypothesized that differences in concentrations of calcium in the different water sources might have resulted in differences in acquired sensitivity of sturgeon to metals. Canadian water quality guidelines, US national criteria for the protection of aquatic life, and water quality criteria for the state of Washington were less than LC50 values for all metals and life stages tested in laboratory and Columbia River water. With the exception, however, that 40 dph white sturgeon exposed to Cu in laboratory water resulted in threshold values that bordered US national criteria and criteria for the state of Washington.


Assuntos
Espécies em Perigo de Extinção , Peixes/crescimento & desenvolvimento , Metais Pesados/toxicidade , Rios/química , Testes de Toxicidade Aguda , Poluentes Químicos da Água/toxicidade , Qualidade da Água/normas , Animais , Colúmbia Britânica , Cádmio/análise , Cádmio/toxicidade , Cobre/análise , Cobre/toxicidade , Chumbo/análise , Chumbo/toxicidade , Dose Letal Mediana , Metais Pesados/análise , Estatísticas não Paramétricas , Poluentes Químicos da Água/análise , Zinco/análise , Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA