Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Ageing Res Rev ; 98: 102322, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723753

RESUMO

Age-related macular degeneration (AMD) is a significant factor contributing to serious vision loss in adults above 50. The presence of posterior segment barriers serves as chief roadblocks in the delivery of drugs to treat AMD. The conventional treatment strategies use is limited due to its off-targeted distribution in the eye, shorter drug residence, poor penetration and bioavailability, fatal side effects, etc. The above-mentioned downside necessitates drug delivery using some cutting-edge technology including diverse nanoparticulate systems and microneedles (MNs) which provide the best therapeutic delivery alternative to treat AMD efficiently. Furthermore, cutting-edge treatment modalities including gene therapy and stem cell therapy can control AMD effectively by reducing the boundaries of conventional therapies with a single dose. This review discusses AMD overview, conventional therapies for AMD and their restrictions, repurposed therapeutics and their anti-AMD activity through different mechanisms, and diverse barriers in drug delivery for AMD. Various nanoparticulate-based approaches including polymeric NPs, lipidic NPs, exosomes, active targeted NPs, stimuli-sensitive NPs, cell membrane-coated NPs, inorganic NPs, and MNs are explained. Gene therapy, stem cell therapy, and therapies in clinical trials to treat AMD are also discussed. Further, bottlenecks of cutting-edge (nanoparticulate) technology-based drug delivery are briefed. In a nutshell, cutting-edge technology-based therapies can be an effective way to treat AMD.


Assuntos
Terapia Genética , Degeneração Macular , Humanos , Degeneração Macular/terapia , Terapia Genética/métodos , Terapia Genética/tendências , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/tendências , Animais , Nanopartículas/uso terapêutico , Transplante de Células-Tronco/métodos , Transplante de Células-Tronco/tendências
2.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38794142

RESUMO

Despite past efforts towards therapeutical innovation, cancer remains a highly incident and lethal disease, with current treatments lacking efficiency and leading to severe side effects. Hence, it is imperative to develop new, more efficient, and safer therapies. Bee venom has proven to have multiple and synergistic bioactivities, including antitumor effects. Nevertheless, some toxic effects have been associated with its administration. To tackle these issues, in this work, bee venom-loaded niosomes were developed, for cancer treatment. The vesicles had a small (150 nm) and homogeneous (polydispersity index of 0.162) particle size, and revealed good therapeutic efficacy in in vitro gastric, colorectal, breast, lung, and cervical cancer models (inhibitory concentrations between 12.37 ng/mL and 14.72 ng/mL). Additionally, they also revealed substantial anti-inflammatory activity (inhibitory concentration of 28.98 ng/mL), effects complementary to direct antitumor activity. Niosome safety was also assessed, both in vitro (skin, liver, and kidney cells) and ex vivo (hen's egg chorioallantoic membrane), and results showed that compound encapsulation increased its safety. Hence, small, and homogeneous bee venom-loaded niosomes were successfully developed, with substantial anticancer and anti-inflammatory effects, making them potentially promising primary or adjuvant cancer therapies. Future research should focus on evaluating the potential of the developed platform in in vivo models.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38758498

RESUMO

Skin cancer remains one of the most prominent types of cancer. Melanoma and non-melanoma skin cancer are commonly found together, with melanoma being the more deadly type. Skin cancer can be effectively treated with chemotherapy, which mostly uses small molecular medicines, phytoceuticals, and biomacromolecules. Topical delivery of these therapeutics is a non-invasive way that might be useful in effectively managing skin cancer. Different skin barriers, however, presented a major obstacle to topical cargo administration. Transferosomes have demonstrated significant potential in topical delivery by improving cargo penetration through the circumvention of diverse skin barriers. Additionally, the transferosome-based gel can prolong the residence of drug on the skin, lowering the frequency of doses and their associated side effects. However, the choice of appropriate transferosome compositions, such as phospholipids and edge activators, and fabrication technique are crucial for achieving improved entrapment efficiency, penetration, and regulated particle size. The present review discusses skin cancer overview, current treatment strategies for skin cancer and their drawbacks. Topical drug delivery against skin cancer is also covered, along with the difficulties associated with it and the importance of transferosomes in avoiding these difficulties. Additionally, a summary of transferosome compositions and fabrication methods is provided. Furthermore, topical delivery of small molecular drugs, phytoceuticals, and biomacromolecules using transferosomes and transferosomes-based gel in treating skin cancer is discussed. Thus, transferosomes can be a significant option in the topical delivery of drugs to manage skin cancer efficiently.

4.
Biomed Pharmacother ; 174: 116376, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508080

RESUMO

Alzheimer's disease (AD) is a very common neurodegenerative disorder associated with memory loss and a progressive decline in cognitive activity. The two major pathophysiological factors responsible for AD are amyloid plaques (comprising amyloid-beta aggregates) and neurofibrillary tangles (consisting of hyperphosphorylated tau protein). Polyphenols, a class of naturally occurring compounds, are immensely beneficial for the treatment or management of various disorders and illnesses. Naturally occurring sources of polyphenols include plants and plant-based foods, such as fruits, herbs, tea, vegetables, coffee, red wine, and dark chocolate. Polyphenols have unique properties, such as being the major source of anti-oxidants and possessing anti-aging and anti-cancerous properties. Currently, dietary polyphenols have become a potential therapeutic approach for the management of AD, depending on various research findings. Dietary polyphenols can be an effective strategy to tackle multifactorial events that occur with AD. For instance, naturally occurring polyphenols have been reported to exhibit neuroprotection by modulating the Aß biogenesis pathway in AD. Many nanoformulations have been established to enhance the bioavailability of polyphenols, with nanonization being the most promising. This review comprehensively provides mechanistic insights into the neuroprotective potential of dietary polyphenols in treating AD. It also reviews the usability of dietary polyphenol as nanoformulation for AD treatment.


Assuntos
Doença de Alzheimer , Polifenóis , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/dietoterapia , Doença de Alzheimer/metabolismo , Polifenóis/farmacologia , Humanos , Animais , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Nanopartículas/química , Dieta , Peptídeos beta-Amiloides/metabolismo , Disponibilidade Biológica
5.
Sci Rep ; 14(1): 4453, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396007

RESUMO

Consumer demand for natural, chemical-free products has grown. Food industry residues, like coffee pulp, rich in caffeine, chlorogenic acid and phenolic compounds, offer potential for pharmaceutical and cosmetic applications due to their antioxidant, anti-inflammatory, and antibacterial properties. Therefore, the objective of this work was to develop a phytocosmetic only with natural products containing coffee pulp extract as active pharmaceutical ingredient with antioxidant, antimicrobial and healing activity. Eight samples from Coffea arabica and Coffea canephora Pierre were analyzed for caffeine, chlorogenic acid, phenolic compounds, tannins, flavonoids, cytotoxicity, antibacterial activity, and healing potential. The Robusta IAC-extract had the greatest prominence with 192.92 µg/mL of chlorogenic acid, 58.98 ± 2.88 mg GAE/g sample in the FRAP test, 79.53 ± 5.61 mg GAE/g sample in the test of total phenolics, was not cytotoxic, and MIC 3 mg/mL against Staphylococcus aureus. This extract was incorporated into a stable formulation and preferred by 88% of volunteers. At last, a scratch assay exhibited the formulation promoted cell migration after 24 h, therefore, increased scratch retraction. In this way, it was possible to develop a phytocosmetic with the coffee pulp that showed desirable antioxidant, antimicrobial and healing properties.


Assuntos
Antioxidantes , Coffea , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Cafeína/farmacologia , Cafeína/química , Ácido Clorogênico/farmacologia , Ácido Clorogênico/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fenóis/farmacologia , Antibacterianos/farmacologia , Coffea/química
6.
Carbohydr Polym ; 330: 121839, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368115

RESUMO

Cancer, a global health challenge of utmost severity, necessitates innovative approaches beyond conventional treatments (e.g., surgery, chemotherapy, and radiation therapy). Unfortunately, these approaches frequently fail to achieve comprehensive cancer control, characterized by inefficacy, non-specific drug distribution, and the emergence of adverse side effects. Nanoscale systems based on natural polymers like chitosan have garnered significant attention as promising platforms for cancer diagnosis and therapy owing to chitosan's inherent biocompatibility, biodegradability, nontoxicity, and ease of functionalization. Herein, recent advancements pertaining to the applications of chitosan nanoparticles in cancer imaging and drug/gene delivery are deliberated. The readers are introduced to conventional non-stimuli-responsive and stimuli-responsive chitosan-based nanoplatforms. External triggers like light, heat, and ultrasound and internal stimuli such as pH and redox gradients are highlighted. The utilization of chitosan nanomaterials as contrast agents or scaffolds for multimodal imaging techniques e.g., magnetic resonance, fluorescence, and nuclear imaging is represented. Key applications in targeted chemotherapy, combination therapy, photothermal therapy, and nucleic acid delivery using chitosan nanoformulations are explored for cancer treatment. The immunomodulatory effects of chitosan and its role in impacting the tumor microenvironment are analyzed. Finally, challenges, prospects, and future outlooks regarding the use of chitosan-based nanosystems are discussed.


Assuntos
Quitosana , Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Quitosana/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanoestruturas/química , Nanopartículas/uso terapêutico , Nanopartículas/química , Microambiente Tumoral
7.
Pharmaceutics ; 16(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38258105

RESUMO

Pancreatic cancer (PC) is an aggressive cancer subtype presenting unmet clinical challenges. Conventional chemotherapy, which includes antimetabolite gemcitabine (GEM), is seriously undermined by a short half-life, its lack of targeting ability, and systemic toxicity. GEM incorporation in self-assembled nanosystems is still underexplored due to GEM's hydrophilicity which hinders efficient encapsulation. We hypothesized that vitamin E succinate-GEM prodrug (VES-GEM conjugate) combines hydrophobicity and multifunctionalities that can facilitate the development of Pluronic® F68 and Pluronic® F127 micelle-based nanocarriers, improving the therapeutic potential of GEM. Pluronic® F68/VES-GEM and Pluronic® F127/VES-GEM micelles covering a wide range of molar ratios were prepared by solvent evaporation applying different purification methods, and characterized regarding size, charge, polydispersity index, morphology, and encapsulation. Moreover, the effect of sonication and ultrasonication and the influence of a co-surfactant were explored together with drug release, stability, blood compatibility, efficacy against tumour cells, and cell uptake. The VES-GEM conjugate-loaded micelles showed acceptable size and high encapsulation efficiency (>95%) following an excipient reduction rationale. Pluronic® F127/VES-GEM micelles evidenced a superior VES-GEM release profile (cumulative release > 50%, pH = 7.4), stability, cell growth inhibition (<50% cell viability for 100 µM VES-GEM), blood compatibility, and extensive cell internalization, and therefore represent a promising approach to leveraging the efficacy and safety of GEM for PC-targeted therapies.

8.
Gels ; 10(1)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38247768

RESUMO

Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions.

9.
Hum Cell ; 37(1): 121-138, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37878214

RESUMO

Almost all cell types, either in vivo or in vitro, create extracellular vesicles (EVs). Among them are exosomes (EXOs), i.e., tiny nanovesicles containing a lipid bilayer, proteins, and RNAs that are actively involved in cellular communication, indicating that they may be exploited as both diagnostics and therapeutics for conditions like cancer. These nanoparticles can also be used as nanocarriers in many types of research to carry agents such as drugs. Plant-derived exosome-like nanoparticles (PENs) are currently under investigation as a substitute for EXOs formed from mammalian cells, allowing researchers to get beyond the technical constraints of mammalian vesicles. Because of their physiological, chemical, and biological properties, PENs have a lot of promise for use as nanocarriers in drug delivery systems that can deliver various dosages, especially when it comes to large-scale repeatability. The present study has looked at the origins and isolation techniques of PENs, their anticancer properties, their usage as nanocarriers in the treatment of different illnesses, and their antioxidant properties. These nanoparticles can aid in the achievement of therapeutic objectives, as they have benign, non-immunogenic side effects and can pass biological barriers. Time-consuming and perhaps damaging PEN separation techniques is used. For the current PEN separation techniques to be used in commercial and therapeutic settings, they must be altered. In this regard, the concurrent application of biological sciences can be beneficial for improving PEN separation techniques. PENs' innate metabolic properties provide them a great deal of promise for application in drug delivery systems. However, there could be a risk to both the loaded medications and the intrinsic bioactive components if these particles are heavily armed with drugs. Therefore, to prevent these side effects, more studies are needed to devise sophisticated drug-loading procedures and to learn more about the physiology of PENs.


Assuntos
Exossomos , Vesículas Extracelulares , Neoplasias , Animais , Exossomos/metabolismo , Engenharia Tecidual , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Mamíferos
10.
Biomater Sci ; 12(1): 57-91, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37902579

RESUMO

In recent years, considerable attention has been given to phototherapy, including photothermal and photodynamic therapy to kill tumor cells by producing heat or reactive oxygen species (ROS). It has the high merits of noninvasiveness and limited drug resistance. To fully utilize this therapy, an extraordinary nanovehicle is required to target phototherapeutic agents in the tumor cells. Nanovesicles embody an ideal strategy for drug delivery applications. Cell membrane-derived biomimetic nanovesicles represent a developing type of nanocarrier. Combining this technique with cancer phototherapy could enable a novel strategy. Herein, efforts are made to describe a comprehensive overview of cell membrane-derived biomimetic nanovesicles for cancer phototherapy. The description in this review is mainly based on representative examples of exosome-derived biomimetic nanomedicine research, ranging from their comparison with traditional nanocarriers to extensive applications in cancer phototherapy. Additionally, the challenges and future prospectives for translating these for clinical application are discussed.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Biomimética , Fototerapia , Membrana Celular , Neoplasias/terapia , Nanopartículas/uso terapêutico
11.
Biomaterials ; 302: 122348, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37866013

RESUMO

The hair follicle (HF) is a multicellular complex structure of the skin that contains a reservoir of multipotent stem cells. Traditional hair repair methods such as drug therapies, hair transplantation, and stem cell therapy have limitations. Advances in nanotechnology offer new approaches for HF regeneration, including controlled drug release and HF-specific targeting. Until recently, embryogenesis was thought to be the only mechanism for forming hair follicles. However, in recent years, the phenomenon of wound-induced hair neogenesis (WIHN) or de novo HF regeneration has gained attention as it can occur under certain conditions in wound beds. This review covers HF-specific targeting strategies, with particular emphasis on currently used nanotechnology-based strategies for both hair loss-related diseases and HF regeneration. HF regeneration is discussed in several modalities: modulation of the hair cycle, stimulation of progenitor cells and signaling pathways, tissue engineering, WIHN, and gene therapy. The HF has been identified as an ideal target for nanotechnology-based strategies for hair regeneration. However, some regulatory challenges may delay the development of HF regeneration nanotechnology based-strategies, which will be lastly discussed.


Assuntos
Folículo Piloso , Cabelo , Pele/metabolismo , Engenharia Tecidual/métodos , Regeneração/fisiologia
12.
Mol Pharm ; 20(8): 3804-3828, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478169

RESUMO

Rosacea is a multifactorial chronic inflammatory dermatosis characterized by flushing, nontransient erythema, papules and pustules, telangiectasia, and phymatous alterations accompanied by itching, burning, or stinging, the pathophysiology of which is not yet fully understood. Conventional topical treatments usually show limited efficacy due to the physical barrier property of the skin that hinders skin penetration of the active ingredients, thereby hampering proper drug skin delivery and the respective therapeutic or cosmetic effects. New advances regarding the physiopathological understanding of the disease and the underlying mechanisms suggest the potential of new active ingredients as promising therapeutic and cosmetic approaches to this dermatosis. Additionally, the development of new drug delivery systems for skin delivery, particularly the potential of nanoparticles for the topical treatment and care of rosacea, has been described. Emphasis has been placed on their reduced nanometric size, which contributes to a significant improvement in the attainment of targeted skin drug delivery. In addition to the exposition of the known pathophysiology, epidemiology, diagnosis, and preventive measures, this Review covers the topical approaches used in the control of rosacea, including skin care, cosmetics, and topical therapies, as well as the future perspectives on these strategies.


Assuntos
Fármacos Dermatológicos , Rosácea , Humanos , Rosácea/tratamento farmacológico , Rosácea/diagnóstico , Rosácea/patologia , Administração Tópica , Doença Crônica , Fármacos Dermatológicos/uso terapêutico
13.
Environ Res ; 235: 116700, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479214

RESUMO

A novel biodegradable dextrin-based nanocomposite, involving polypyrrole (PPy) and hydrophilic dextrin (Dex) (PPy@Dex) was prepared using in-situ radical chemical polymerization technique. The obtained PPy@Dex bionanocomposite was fully characterized by FT-IR, XRD, FESEM, and DSC methods. The exceptional properties such as biocompatibility, high surface area, the proper functional group on the surface, and outstanding electrical conductivity of synthesized bionanocomposite made it a superior candidate over biomolecules immobilization. Electrochemical observations revealed that the PPy@Dex-coated glassy carbon electrode (GCE) demonstrated improved performance, making it a suitable substrate for immobilizing hemoglobin (Hb) and constructing an efficient biosensor. The resulting biosensor, named Hb-PPy@Dex/GCE, exhibited high activity in the reduction of hydrogen peroxide (H2O2). Amperometric examinations demonstrated an extensive linear range from 2 to 350 µM for Hb-PPy@Dex/GCE. The detection limit of the proposed approach was calculated to be 0.54 µM, following the S/N = 3 protocol.


Assuntos
Peróxido de Hidrogênio , Polímeros , Polímeros/química , Peróxido de Hidrogênio/química , Dextrinas , Espectroscopia de Infravermelho com Transformada de Fourier , Pirróis/química , Hemoglobinas , Carbono/química
14.
Transpl Infect Dis ; 25(4): e14098, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37428874

RESUMO

INTRODUCTION: Measles, mumps, rubella, and even poliomyelitis outbreaks have recently perplexed infectious disease clinicians and epidemiologists globally due to the decline in vaccination coverage rates in children and adults. Measles and yellow fever (YF) have represented an increasing burden on the Brazilian public health system in recent decades. Both diseases are preventable by live-attenuated viral vaccines (LAVV), which have restricted use in hematopoietic cell transplant (HCT) recipients. METHODS: Autologous and allogeneic HCT recipients returning for regular appointments at the outpatient clinic were invited to participate in the study. Patients transplanted for at least 2 years and with a printed copy of the vaccination record were included. RESULTS: We assessed the vaccination records of 273 HCT recipients after the second year of HCT (193 allogeneic and 80 autologous) and observed lower compliance with the YF vaccine (58 patients, 21.2%) than with the measles vaccine (138 patients, 50.5%, p ≤ .0001). This is the largest published series of YF vaccination in HCT recipients so far. No severe adverse events occurred. Although expected, chronic graft-versus-host disease (GVHD) did not affect the compliance with measles (p = .08) or YF vaccination (p = .7). Indeed, more allogeneic recipients received measles vaccine in comparison with autologous patients (p < .0001), suggesting that chronic GVHD was not the main reason for not being vaccinated. Children and allogeneic HCT were more likely to receive measles vaccine. Time elapsed from HCT >5 years favored both measles and YF vaccination. CONCLUSION: A better understanding of the reasons for low compliance with LAVV is necessary to overcome this problem.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Sarampo , Vacina contra Febre Amarela , Febre Amarela , Adulto , Criança , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Imunização Secundária , Sarampo/prevenção & controle , Vacina contra Sarampo/administração & dosagem , Vacinação , Vacinas Virais , Febre Amarela/prevenção & controle , Vacina contra Febre Amarela/administração & dosagem
15.
Molecules ; 28(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298889

RESUMO

The body's normal immune response against any invading pathogen that causes infection in the body results in inflammation. The sudden transformation in inflammation leads to the rise of inflammatory diseases such as chronic inflammatory bowel disease, autoimmune disorders, and colorectal cancer (different types of cancer develop at the site of chronic infection and inflammation). Inflammation results in two ways: short-term inflammation i.e., non-specific, involves the action of various immune cells; the other results in long-term reactions lasting for months or years. It is specific and causes angiogenesis, fibrosis, tissue destruction, and cancer progression at the site of inflammation. Cancer progression relies on the interaction between the host microenvironment and tumor cells along with the inflammatory responses, fibroblast, and vascular cells. The two pathways that have been identified connecting inflammation and cancer are the extrinsic and intrinsic pathways. Both have their own specific role in linking inflammation to cancer, involving various transcription factors such as Nuclear factor kappa B, Activator of transcription, Single transducer, and Hypoxia-inducible factor, which in turn regulates the inflammatory responses via Soluble mediators cytokines (such as Interleukin-6, Hematopoietin-1/Erythropoietin, and tumor necrosis factor), chemokines (such as Cyclooxygenase-2, C-X-C Motif chemokines ligand-8, and IL-8), inflammatory cells, cellular components (such as suppressor cells derived from myeloid, tumor-associated macrophage, and acidophils), and promotes tumorigenesis. The treatment of these chronic inflammatory diseases is challenging and needs early detection and diagnosis. Nanotechnology is a booming field nowadays for its rapid action and easy penetration inside the infected destined cells. Nanoparticles are widely classified into different categories based on their different factors and properties such as size, shape, cytotoxicity, and others. Nanoparticles emerged as excellent with highly progressive medical inventions to cure diseases such as cancer, inflammatory diseases, and others. Nanoparticles have shown higher binding capacity with the biomolecules in inflammation reduction and lowers the oxidative stress inside tissue/cells. In this review, we have overall discussed inflammatory pathways that link inflammation to cancer, major inflammatory diseases, and the potent action of nanoparticles in chronic inflammation-related diseases.


Assuntos
Inflamação , Neoplasias , Humanos , Inflamação/tratamento farmacológico , Neoplasias/metabolismo , Citocinas/metabolismo , NF-kappa B/metabolismo , Quimiocinas , Microambiente Tumoral
16.
Gels ; 9(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37232965

RESUMO

Flavonoids and polyphenolic compounds play a key role in wound healing cycle modulation. Propolis, a natural bee product, has been widely reported as an enriched source of polyphenols and flavonoids as important chemical constituents and for its wound healing potential. The goal of this study was to develop and characterize a propolis-based polyvinyl alcohol (PVA) hydrogel composition with wound healing potential. To understand the impacts of critical material attributes and process parameters, formulation development was carried out using a design of experiment approach. A preliminary phytochemical analysis of Indian propolis extract showed the presence of flavonoids (23.61 ± 0.0452 mg equivalent of quercetin/g) and polyphenols (34.82 ± 0.0785 mg equivalent of gallic acid/g), both of which aid in wound healing and skin tissue regeneration. The pH, viscosity, and in vitro release of the hydrogel formulation were also studied. The burn wound healing model results revealed significant (p < 0.0001) wound contraction by propolis hydrogel (93.58 + 0.15%) with rapid re-epithelialization relative to 5% w/w povidone iodine ointment USP (Cipladine®) (95.39 + 0.16%). The excision wound healing model confirms significant (p < 0.0001) wound contraction by propolis hydrogel (91.45 + 0.29%) with accelerated re-epithelialization comparable to 5% w/w povidone iodine ointment USP (Cipladine®) (94.38 + 0.21%). The developed formulation offers promise for wound healing, which may be investigated further for clinical research.

17.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37242453

RESUMO

The human skin is a recurring target of external aggressions, such as UV radiation, leading to exacerbation of the aging process and the occurrence of skin diseases, such as cancer. Hence, preventive measures should be taken to protect it against these aggressions, consequently decreasing the chance of disease development. In the present study, a topical xanthan gum nanogel containing gamma-oryzanol-loaded nanostructured lipid carriers (NLCs) and nanosized UV filters TiO2 and methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT) was developed to assess their synergistic potential in having multifunctional skin beneficial properties. The developed NLCs contained the natural-based solid lipids shea butter and beeswax, liquid lipid carrot seed oil, and the potent antioxidant gamma-oryzanol, with an optimum particle size for topical application (<150 nm), good homogeneity (PDI = 0.216), high zeta potential (-34.9 mV), suitable pH value (6), good physical stability, high encapsulation efficiency (90%), and controlled release. The final formulation, a nanogel containing the developed NLCs and the nano UV filters, showed high long-term storage stability and high photoprotection ability (SPF = 34) and resulted in no skin irritation or sensitization (rat model). Hence, the developed formulation showed good skin protection and compatibility, demonstrating promise as a new platform for the future generation of natural-based cosmeceuticals.

18.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37111258

RESUMO

Melanoma is a highly lethal type of cancer that has had an increase in incidence in the last decades. Nevertheless, current therapies lack effectiveness and have highly disabling side effects, which calls for new therapeutic strategies. Norcantharidin (NCTD) is an acid derivative with potential antitumor activity isolated from natural blister beetles. However, its solubility limitations restrict its use. To address this issue, we developed an oil-in-water nanoemulsion using commonly available cosmetic ingredients, which increased NCTD solubility 10-fold compared to water. The developed nanoemulsion showed a good droplet size and homogeneity, with adequate pH and viscosity for skin application. In vitro drug release studies showed a sustained release profile, ideal for prolonged therapeutic effects. Accelerated stability studies proved that the formulation was reasonably stable under stress conditions, with particle separation fingerprints, instability index, particle size, and sedimentation velocity analyses being conducted. To assess the therapeutic potential of the developed formulation, in vitro studies were conducted on melanoma B16F1 cells; results showed an IC50 of 1.026 +/- 0.370 mg/kg, and the cells' metabolic activity decreased after exposure to the NCTD nanoemulsion. Hence, a new "easy-to-make" nanoformulation with therapeutic potential on melanoma cells was developed, as a possible adjuvant for future melanoma treatment.

19.
Mar Drugs ; 21(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37103352

RESUMO

Chitin is the second most abundant biopolymer consisting of N-acetylglucosamine units and is primarily derived from the shells of marine crustaceans and the cell walls of organisms (such as bacteria, fungi, and algae). Being a biopolymer, its materialistic properties, such as biodegradability, and biocompatibility, make it a suitable choice for biomedical applications. Similarly, its deacetylated derivative, chitosan, exhibits similar biocompatibility and biodegradability properties, making it a suitable support material for biomedical applications. Furthermore, it has intrinsic material properties such as antioxidant, antibacterial, and antitumor. Population studies have projected nearly 12 million cancer patients across the globe, where most will be suffering from solid tumors. One of the shortcomings of potent anticancer drugs is finding a suitable cellular delivery material or system. Therefore, identifying new drug carriers to achieve effective anticancer therapy is becoming essential. This paper focuses on the strategies implemented using chitin and chitosan biopolymers in drug delivery for cancer treatment.


Assuntos
Antineoplásicos , Quitosana , Nanopartículas , Neoplasias , Humanos , Quitosana/uso terapêutico , Quitina , Sistemas de Liberação de Medicamentos , Biopolímeros , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
20.
Adv Mater ; 35(18): e2210034, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36739591

RESUMO

Driven by regulatory authorities and the ever-growing demands from industry, various artificial tissue models have been developed. Nevertheless, there is no model to date that is capable of mimicking the biomechanical properties of the skin whilst exhibiting the hydrophilicity/hydrophobicity properties of the skin layers. As a proof-of-concept study, tissue surrogates based on gel and silicone are fabricated for the evaluation of microneedle penetration, drug diffusion, photothermal activity, and ultrasound bioimaging. The silicone layer aims to imitate the stratum corneum while the gel layer aims to mimic the water-rich viable epidermis and dermis present in in vivo tissues. The diffusion of drugs across the tissue model is assessed, and the results reveal that the proposed tissue model shows similar behavior to a cancerous kidney. In place of typical in vitro aqueous solutions, this model can also be employed for evaluating the photoactivity of photothermal agents since the tissue model shows a similar heating profile to skin of mice when irradiated with near-infrared laser. In addition, the designed tissue model exhibits promising results for biomedical applications in optical coherence tomography and ultrasound imaging. Such a tissue model paves the way to reduce the use of animals testing in research whilst obviating ethical concerns.


Assuntos
Epiderme , Pele , Animais , Camundongos , Pele/diagnóstico por imagem , Ultrassonografia/métodos , Silicones/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA