Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Bol. latinoam. Caribe plantas med. aromát ; 22(4): 472-487, jul. 2023. graf, tab
Artigo em Inglês | LILACS | ID: biblio-1556229

RESUMO

Bertholletia excelsa is native to the Amazon Rainforest and is popularly known as the Brazil nut. It has socioeconomic importance due its nuts being a great export product. There are few studies in the literature regarding the biotechnological potential of its bark, although it is used in folk medicine. The aim of this study was to determine the chemical constituents, anti-inflammatory and antioxidant properties of B. excelsa bark extract (BEB). Twelve substances were identified by LC/MS/MS, and cytotoxicity tests were carried out, as well as analyses of nitric oxide production and elimination of free radicals. BEB caused cytoprotection against oxidative stress in macrophages, increased HMOX-1 expression, overcame the antioxidant effects of GPx-1 and reduced its expression and was able to inhibit leukocyte migration in use peritonitis. BEB efficiently attenuated oxidative stress due to its antioxidant and anti-inflammatory properties and, as such, can be used as a safe and effective source of a natural herbal medicine.


Bertholletia excelsa es originaria de la selva amazónica y se la conoce popularmente como nuez de Brasil. Tiene importancia socioeconómica debido a que sus frutos secos son un gran producto de exportación. Existen pocos estudios en la literatura sobre el potencial biotecnológico de su corteza, aunque se utiliza en medicina popular. El objetivo de este estudio fue determinar los componentes químicos, las propiedades antiinflamatorias y antioxidantes del extracto de corteza de B. excelsa (BEB). Se identificaron 12 sustancias mediante LC/MS/MS y se realizaron pruebas de citotoxicidad, así como análisis de producción de óxido nítrico y eliminación de radicales libres. BEB causó citoprotección contra el estrés oxidativo en macrófagos, aumentó la expresión de HMOX-1, superó los efectos antioxidantes de GPx-1 y redujo su expresión y fue capaz de inhibir la migración de leucocitos en la peritonitis de uso. BEB atenuó eficazmente el estrés oxidativo debido a sus propiedades antioxidantes y antiinflamatorias y, como tal, puede utilizarse como una fuente segura y eficaz de un medicamento a base de hierbas naturales.


Assuntos
Extratos Vegetais/farmacologia , Bertholletia/química , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Plantas Medicinais , Brasil , Casca de Planta/química
2.
Food Res Int ; 109: 112-119, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29803432

RESUMO

Remela de cachorro (Clavija lancifolia Desf.) is an Amazonian native fruit consumed specially in the Purus microregion. Because of its rarity, restricted consumption, and the lack of knowledge about its chemical composition, remela de cachorro fruit was studied in relation to its phenolic and aroma constitution. Using liquid chromatography tandem mass spectrometry (LC-MS/MS), 11 compounds (flavonoids and its glucosides along with organic acids) were tentatively identified by fragmentation patterns. A previously validated method was applied to quantify common antioxidant compounds in the raw pulps, for which kaempferol was the main compound. Gas chromatography mass spectrometry (GC-MS) with headspace solid-phase microextraction (HS-SPME) was employed to assess the aroma composition of remela de cachorro fruit. A total of 27 volatile organic compounds (VOCs) were identified for this fruit, for which benzaldehyde and linalool were the main VOCs. Furthermore, biological activities, such as antioxidant capacity (ABTS, DPPH, and ORAC methods), cytotoxicity, and α-glucosidase and lipase inhibitions of the hydroalcoholic extract of remela de cachorro fruit were evaluated. In vitro biological assays revealed the potential of this fruit as a bioactive food that should be further studied and explored in Amazonian products.


Assuntos
Antioxidantes , Frutas/química , Odorantes/análise , Fenóis , Extratos Vegetais , Primulaceae/química , Antioxidantes/análise , Antioxidantes/farmacologia , Brasil , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ácido Clorogênico/análise , Ácido Clorogênico/farmacologia , Flavonoides/análise , Flavonoides/farmacologia , Glucosídeos/análise , Glucosídeos/farmacologia , Humanos , Fenóis/análise , Fenóis/farmacologia , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Reprodutibilidade dos Testes
3.
Front Pharmacol ; 8: 466, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28855870

RESUMO

Phytochemical studies are seeking new alternatives to prevent or treat cancer, including different types of leukemias. Campomanesia adamantium, commonly known as guavira or guabiroba, exhibits pharmacological properties including antioxidant, antimicrobial, and antiproliferative activities. Considering the anticancer potential of this plant species, the aim of this study was to evaluate the antileukemic activity and the chemical composition of aqueous extracts from the leaves (AECL) and roots (AECR) of C. adamantium and their possible mechanisms of action. The extracts were analyzed by LC-DAD-MS, and their constituents were identified based on the UV, MS, and MS/MS data. The AECL and AECR showed different chemical compositions, which were identified as main compounds glycosylated flavonols from AECL and ellagic acid and their derivatives from AECR. The cytotoxicity promoted by these extracts were evaluated using human peripheral blood mononuclear cells and Jurkat leukemic cell line. The cell death profile was evaluated using annexin-V-FITC and propidium iodide labeling. Changes in the mitochondrial membrane potential, the activity of caspases, and intracellular calcium levels were assessed. The cell cycle profile was evaluated using propidium iodide. Both extracts caused concentration-dependent cytotoxicity only in Jurkat cells via late apoptosis. This activity was associated with loss of the mitochondrial membrane potential, activation of caspases-9 and -3, changes in intracellular calcium levels, and cell cycle arrest in S-phase. Therefore, the antileukemic activity of the AECL and AECR is mediated by mitochondrial dysfunction and intracellular messengers, which activate the intrinsic apoptotic pathway. Hence, aqueous extracts of the leaves and roots of C. adamantium show therapeutic potential for use in the prevention and treatment of diseases associated the proliferation of tumor cell.

4.
Regul Pept ; 172(1-3): 1-7, 2011 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21787808

RESUMO

Angiotensin II (AII) is the active octapeptide product of the renin enzymatic cascade, which is responsible for sustaining blood pressure. In an attempt to establish the AII-receptor-bound conformation of this octapeptide, we designed conformationally constrained analogues by scanning the entire AII sequence with an i-(i+2) and i-(i+3) lactam bridge consisting of an Asp-(Xaa)(n)-Lys scaffold. Most analogues presented low agonistic activity when compared to AII in the different bioassays tested. The exceptions are cyclo(0-1a) [Asp(0), endo-(Lys(1a))]-AII (1) and [Asp(0), endo-(Lys(1a))]-AII (2), both of which showed activity similar to AII. Based on peptide 1 and the analogue cyclo(3-5)[Sar(1), Asp(3), Lys(5)]-AII characterized by Matsoukas et al., we analyzed the agonistic and antagonistic activities, respectively, through a new monocyclic peptide series synthesized by using the following combinations of residues as bridgehead elements for the lactam bond formation: D- or L-Asp combined with D- or L-Lys or L-Glu combined with L-Orn. Six analogues showed an approximately 20% increase in biological activity when compared with peptide (1) and were equipotent to AII. In contrast, six analogues presented antagonistic activity. These results suggest that the position of the lactam bridge is more important than the bridge length or chirality for recognition of and binding to the angiotensin II AT1-receptor.


Assuntos
Angiotensina II/química , Peptídeos/química , Peptídeos/farmacologia , Angiotensina II/análogos & derivados , Animais , Células CHO , Dicroísmo Circular , Cricetinae , Feminino , Cobaias , Íleo/efeitos dos fármacos , Masculino , Conformação Molecular , Peptídeos/síntese química , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade , Útero/efeitos dos fármacos
5.
BMC Cancer ; 11: 296, 2011 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-21756336

RESUMO

BACKGROUND: Systemic therapy for cancer metastatic lesions is difficult and generally renders a poor clinical response. Structural analogs of cisplatin, the most widely used synthetic metal complexes, show toxic side-effects and tumor cell resistance. Recently, palladium complexes with increased stability are being investigated to circumvent these limitations, and a biphosphinic cyclopalladated complex {Pd(2) [S((-))C(2), N-dmpa](2) (µ-dppe)Cl(2)} named C7a efficiently controls the subcutaneous development of B16F10-Nex2 murine melanoma in syngeneic mice. Presently, we investigated the melanoma cell killing mechanism induced by C7a, and extended preclinical studies. METHODS: B16F10-Nex2 cells were treated in vitro with C7a in the presence/absence of DTT, and several parameters related to apoptosis induction were evaluated. Preclinical studies were performed, and mice were endovenously inoculated with B16F10-Nex2 cells, intraperitoneally treated with C7a, and lung metastatic nodules were counted. The cytotoxic effects and the respiratory metabolism were also determined in human tumor cell lines treated in vitro with C7a. RESULTS: Cyclopalladated complex interacts with thiol groups on the mitochondrial membrane proteins, causes dissipation of the mitochondrial membrane potential, and induces Bax translocation from the cytosol to mitochondria, colocalizing with a mitochondrial tracker. C7a also induced an increase in cytosolic calcium concentration, mainly from intracellular compartments, and a significant decrease in the ATP levels. Activation of effector caspases, chromatin condensation and DNA degradation, suggested that C7a activates the apoptotic intrinsic pathway in murine melanoma cells. In the preclinical studies, the C7a complex protected against murine metastatic melanoma and induced death in several human tumor cell lineages in vitro, including cisplatin-resistant ones. The mitochondria-dependent cell death was also induced by C7a in human tumor cells. CONCLUSIONS: The cyclopalladated C7a complex is an effective chemotherapeutic anticancer compound against primary and metastatic murine and human tumors, including cisplatin-resistant cells, inducing apoptotic cell death via the intrinsic pathway.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Mitocondriais/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Paládio/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Caspases/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Masculino , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/fisiologia , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Estrutura Molecular , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Paládio/química , Paládio/metabolismo , Ratos , Ratos Wistar , Compostos de Sulfidrila/metabolismo , Proteína X Associada a bcl-2/metabolismo
6.
Hypertension ; 57(5): 965-72, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21422380

RESUMO

Angiotensin (Ang) I-converting enzyme (ACE) is involved in the control of blood pressure by catalyzing the conversion of Ang I into the vasoconstrictor Ang II and degrading the vasodilator peptide bradykinin. Human ACE also functions as a signal transduction molecule, and the binding of ACE substrates or its inhibitors initiates a series of events. In this study, we examined whether Ang II could bind to ACE generating calcium signaling. Chinese hamster ovary cells transfected with an ACE expression vector reveal that Ang II is able to bind with high affinity to ACE in the absence of the Ang II type 1 and type 2 receptors and to activate intracellular signaling pathways, such as inositol 1,4,5-trisphosphate and calcium. These effects could be blocked by the ACE inhibitor, lisinopril. Calcium mobilization was specific for Ang II, because other ACE substrates or products, namely Ang 1-7, bradykinin, bradykinin 1-5, and N-acetyl-seryl-aspartyl-lysyl-proline, did not trigger this signaling pathway. Moreover, in Tm5, a mouse melanoma cell line endogenously expressing ACE but not Ang II type 1 or type 2 receptors, Ang II increased intracellular calcium and reactive oxygen species. In conclusion, we describe for the first time that Ang II can interact with ACE and evoke calcium and other signaling molecules in cells expressing only ACE. These findings uncover a new mechanism of Ang II action and have implications for the understanding of the renin-Ang system.


Assuntos
Angiotensina II/metabolismo , Sinalização do Cálcio/fisiologia , Peptidil Dipeptidase A/metabolismo , Análise de Variância , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Células CHO , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Cricetinae , Cricetulus , Citometria de Fluxo , Lisinopril/farmacologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Regul Pept ; 141(1-3): 159-67, 2007 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-17320985

RESUMO

Earlier studies with Mas protooncogene, a member of the G-protein-coupled receptor family, have proposed this gene to code for a functional AngII receptor, however further results did not confirm this assumption. In this work we investigated the hypothesis that a heterodimeration AT(1)/Mas could result in a functional interaction between both receptors. For this purpose, CHO or COS-7 cells were transfected with the wild-type AT(1) receptor, a non-functional AT(1) receptor double mutant (C18F-K20A) and Mas or with WT/Mas and C18F-K20A/Mas. Cells single-expressing Mas or C18F/K20A did not show any binding for AngII. The co-expression of the wild-type AT(1) receptor and Mas showed a binding profile similar to that observed for the wild-type AT(1) expressed alone. Surprisingly, the co-expression of the double mutant C18F/K20A and Mas evoked a total recovery of the binding affinity for AngII to a level similar to that obtained for the wild-type AT(1). Functional measurements using inositol phosphate and extracellular acidification rate assays also showed a clear recovery of activity for AngII on cells co-expressing the mutant C18F/K20A and Mas. In addition, immunofluorescence analysis localized the AT(1) receptor mainly at the plasma membrane and the mutant C18F-K20A exclusively inside the cells. However, the co-expression of C18F-K20A mutant with the Mas changed the distribution pattern of the mutant, with intense signals at the plasma membrane, comparable to those observed in cells expressing the wild-type AT(1) receptor. These results support the hypothesis that Mas is able to rescue binding and functionality of the defective C18F-K20A mutant by dimerization.


Assuntos
Mutação , Proto-Oncogenes/genética , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Angiotensina II/metabolismo , Animais , Células CHO , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Cricetinae , Cricetulus , Fluoresceínas , Técnica Direta de Fluorescência para Anticorpo , Corantes Fluorescentes , Indóis , Concentração Inibidora 50 , Fosfatos de Inositol/análise , Fosfatos de Inositol/metabolismo , Modelos Químicos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Receptor Tipo 1 de Angiotensina/química , Receptores Acoplados a Proteínas G/genética , Transfecção
8.
Int J Cancer ; 107(3): 498-504, 2003 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-14506753

RESUMO

Palladacycle compounds obtained from N, N-dimethyl-1-phenethylamine (dmpa), phenyl-2-pyridinyl-acetylene and 1-phenyl-3-N, N-dimethylamine-propine, respectively, were complexed to 1, 2 ethanebis (diphenylphosphine) (dppe) ligand to synthesize antitumor cyclopalladated complexes that were tested in vitro and in vivo against syngeneic B16F10-Nex2 murine melanoma cells of low immunogenicity implanted subcutaneously in mice. Complexes were not toxic to mice injected 3 times i.p. with as much as 60 microM/animal/week. Of 3 cyclopalladated complexes that were inhibitory in vitro at low concentrations (<1.25 microM), complex 7a was the most active in vivo, delaying tumor growth and prolonging animal survival. In vitro, binucleate complex 7a caused a collapse of respiratory activity with an abrupt decrease of extracellular acidification on short incubation (up to 100 min), followed by DNA degradation after 24 hr. The apoptosis-like reaction to this Pd-complex was not accompanied by increased levels of caspases 1 and 3. Complex 7a bound to a bacterial plasmid DNA, causing late conformational changes after 24 hr. Two other complexes with different C, N-cycles were also apoptotic and 2 binucleated ones were inactive. These results introduce the palladacycle-dppe complexes as promising antitumor drugs with exquisite structural specificities and for action in vivo and in vitro.


Assuntos
Antineoplásicos/farmacologia , Melanoma Experimental/tratamento farmacológico , Paládio/farmacologia , Animais , Apoptose/efeitos dos fármacos , DNA de Neoplasias/metabolismo , Masculino , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Consumo de Oxigênio/efeitos dos fármacos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA