Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 82(1): 3-11, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34785576

RESUMO

Heterogeneity is a pervasive feature of cancer, and understanding the sources and regulatory mechanisms underlying heterogeneity could provide key insights to help improve the diagnosis and treatment of cancer. In this review, we discuss the origin of heterogeneity in the phenotype of individual cancer cells. Genotype-phenotype (G-P) maps are widely used in evolutionary biology to represent the complex interactions of genes and the environment that lead to phenotypes that impact fitness. Here, we present the rationale of an extended G-P (eG-P) map with a cone structure in cancer. The eG-P cone is formed by cells that are similar at the genome layer but gradually increase variability in the epigenome, transcriptome, proteome, metabolome, and signalome layers to produce large variability at the phenome layer. Experimental evidence from single-cell-omics analyses supporting the cancer eG-P cone concept is presented, and the impact of epimutations and the interaction of cancer and tumor microenvironmental eG-P cones are integrated with the current understanding of cancer biology. The eG-P cone concept uncovers potential therapeutic strategies to reduce cancer evolution and improve cancer treatment. More methods to study phenotypes in single cells will be the key to better understand cancer cell fitness in tumor biology and therapeutics.


Assuntos
Genômica/métodos , Neoplasias/genética , Humanos , Fenótipo
2.
Cancer Res ; 81(4): 1040-1051, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33355182

RESUMO

Several phenotypes that impact the capacity of cancer cells to survive and proliferate are dynamic. Here we used the number of cells in colonies as an assessment of fitness and devised a novel method called Dynamic Fitness Analysis (DynaFit) to measure the dynamics in fitness over the course of colony formation. DynaFit is based on the variance in growth rate of a population of founder cells compared with the variance in growth rate of colonies with different sizes. DynaFit revealed that cell fitness in cancer cell lines, primary cancer cells, and fibroblasts under unhindered growth conditions is dynamic. Key cellular mechanisms such as ERK signaling and cell-cycle synchronization differed significantly among cells in colonies after 2 to 4 generations and became indistinguishable from randomly sampled cells regarding these features. In the presence of cytotoxic agents, colonies reduced their variance in growth rate when compared with their founder cell, indicating a dynamic nature in the capacity to survive and proliferate in the presence of a drug. This finding was supported by measurable differences in DNA damage and induction of senescence among cells of colonies. The presence of epigenetic modulators during the formation of colonies stabilized their fitness for at least four generations. Collectively, these results support the understanding that cancer cell fitness is dynamic and its modulation is a fundamental aspect to be considered in comprehending cancer cell biology and its response to therapeutic interventions. SIGNIFICANCE: Cancer cell fitness is dynamic over the course of the formation of colonies. This dynamic behavior is mediated by asymmetric mitosis, ERK activity, cell-cycle duration, and DNA repair capacity in the absence or presence of a drug.


Assuntos
Proliferação de Células/fisiologia , Aptidão Genética/fisiologia , Neoplasias/patologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Clonais/patologia , Células Clonais/fisiologia , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Aptidão Genética/efeitos dos fármacos , Humanos , Células MCF-7 , Mitose/efeitos dos fármacos , Mitose/fisiologia , Temozolomida/farmacologia , Ensaio Tumoral de Célula-Tronco
3.
Naunyn Schmiedebergs Arch Pharmacol ; 393(9): 1701-1714, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32388599

RESUMO

Cancer is one of the most urgent problems in medicine. In recent years, cancer is the second leading cause of death globally. In search for more effective and less toxic treatment against cancer, natural products are used as prototypes in the synthesis of new anticancer drugs. The aim of this study was to investigate the in vivo toxicity and the mechanism of antitumor action of 7-isopentenyloxycoumarin (UMB-07), a coumarin derivative with antitumor activity. The toxicity was evaluated in vitro (hemolysis assay), and in vivo (micronucleus and acute toxicity assays). Ehrlich ascites carcinoma model was used to evaluate in vivo antitumor activity of UMB-07 (12.5, 25, or 50 mg/kg, intraperitoneally, i.p.), after 9 days of treatment, as well as toxicity. UMB-07 (2000 µg/mL) induced only 0.8% of hemolysis in peripheral blood erythrocytes of mice. On acute toxicity assay, LD50 (50% lethal dose) was estimated at around 1000 mg/kg (i.p.), and no micronucleated erythrocytes were recorded after UMB-07 (300 mg/kg, i.p.) treatment. UMB-07 (25 and 50 mg/kg) reduced tumor volume and total viable cancer cells. In the mechanism action investigation, no changes were observed on the cell cycle analysis; however, UMB-07 reduced peritumoral microvessels density and CCL2 chemokine levels. In addition, UMB-07 showed weak toxicity on biochemical, hematological, and histological parameters after 9 days of antitumor treatment. The current findings suggest that UMB-07 has low toxicity and exerts antitumor effect by inhibit angiogenesis via CCL2 chemokine decrease.


Assuntos
Inibidores da Angiogênese/farmacologia , Carcinoma de Ehrlich/tratamento farmacológico , Quimiocina CCL2/metabolismo , Cumarínicos/farmacologia , Neovascularização Patológica , Animais , Carcinoma de Ehrlich/metabolismo , Carcinoma de Ehrlich/patologia , Regulação para Baixo , Feminino , Camundongos , Densidade Microvascular/efeitos dos fármacos , Transdução de Sinais , Microambiente Tumoral
4.
Int J Mol Sci ; 19(9)2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30200386

RESUMO

Natural products have an important role as prototypes in the synthesis of new anticancer drugs. Piperine is an alkaloid amide with antitumor activity and significant toxicity. Then, the N-(p-nitrophenyl)acetamide piperinoate (HE-02) was synthesized, and tested for toxicological and antitumor effects. The toxicity was evaluated in vitro (on RAW 264.7 cells and mice erythrocytes) and in vivo (acute toxicity in mice). The Ehrlich ascites carcinoma model was used to evaluate the antitumor activity of HE-02 (6.25, 12.5 or 25 mg/kg, intraperitoneally, i.p.), as well as toxicity. HE-02 induced only 5.01% of hemolysis, and reduced the viability of RAW 264.7 cells by 49.75% at 1000 µg/mL. LD50 (lethal dose 50%) was estimated at around 2000 mg/kg (i.p.). HE-02 reduced Ehrlich tumor cell viability and peritumoral microvessels density. There was an increase of Th1 helper T lymphocytes cytokine profile levels (IL-1ß, TNF-α, IL-12) and a decrease of Th2 cytokine profile (IL-4, IL-10). Moreover, an increase was observed on reactive oxygen species and nitric oxide production. Weak in vivo toxicological effects were recorded. Our data provide evidence that the piperine analogue HE-02 present low toxicity, and its antitumor effect involves modulation of immune system to a cytotoxic Th1 profile.


Assuntos
Acetamidas/farmacologia , Alcaloides/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzodioxóis/farmacologia , Carcinoma de Ehrlich/tratamento farmacológico , Sistema Imunitário/efeitos dos fármacos , Imunomodulação , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Equilíbrio Th1-Th2/efeitos dos fármacos , Acetamidas/química , Acetamidas/uso terapêutico , Alcaloides/química , Alcaloides/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Benzodioxóis/química , Benzodioxóis/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Feminino , Hemólise/efeitos dos fármacos , Camundongos , Nitrobenzenos/química , Piperidinas/química , Piperidinas/uso terapêutico , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/uso terapêutico , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA