Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(13): e202303591, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038361

RESUMO

Due to their favorable chemical features, Re and Tc complexes have been widely used for the development of new therapeutic agents and imaging probes to solve problems of biomedical relevance. This review provides an update of the most relevant research efforts towards the development of novel cancer theranostic agents using Re and Tc-based compounds interacting with specific DNA structures. This includes a variety of homometallic complexes, namely those containing M(CO)3 (M=Re, Tc) moieties, that exhibit different modes of interaction with DNA, such as covalent binding, intercalation, groove binding or G-quadruplex DNA binding. Additionally, heterometallic complexes, designed to potentiate synergistic effects of different metal centers to improve DNA-targeting, cytotoxicity and fluorescence properties, are also reviewed. Particular attention is also given to 99m Tc- and 188 Re-labeled oligonucleotides that have been widely explored to develop imaging and therapeutic radiopharmaceuticals through the in vivo hybridization with a specific complementary DNA or RNA target sequence to provide useful molecular tools in precision medicine for cancer diagnosis and treatment. Finally, the need for further improvement of DNA-targeted Re and Tc-based compounds as potential therapeutic and diagnostic agents is highlighted, and future directions are discussed.


Assuntos
Neoplasias , Rênio , Humanos , Tecnécio/química , Compostos Radiofarmacêuticos/química , Diagnóstico por Imagem , DNA , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Rênio/química
2.
Mol Pharm ; 21(1): 216-233, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37992229

RESUMO

Nuclear DNA is the canonical target for biological damage induced by Auger electrons (AE) in the context of targeted radionuclide therapy (TRT) of cancer, but other subcellular components might also be relevant for this purpose, such as the energized mitochondria of tumor cells. Having this in mind, we have synthesized novel DOTA-based chelators carrying a prostate-specific membrane antigen (PSMA) inhibitor and a triphenyl phosphonium (TPP) group that were used to obtain dual-targeted 111In-radioconjugates ([111In]In-TPP-DOTAGA-PSMA and [111In]In-TPP-DOTAGA-G3-PSMA), aiming to promote a selective uptake of an AE-emitter radiometal (111In) by PSMA+ prostate cancer (PCa) cells and an enhanced accumulation in the mitochondria. These dual-targeted 111In-radiocomplexes are highly stable under physiological conditions and in cell culture media. The complexes showed relatively similar binding affinities toward the PSMA compared to the reference tracer [111In]In-PSMA-617, in line with their high cellular uptake and internalization in PSMA+ PCa cells. The complexes compromised cell survival in a dose-dependent manner and in the case of [111In]In-TPP-DOTAGA-G3-PSMA to a higher extent than observed for the single-targeted congener [111In]In-PSMA-617. µSPECT imaging studies in PSMA+ PCa xenografts showed that the TPP pharmacophore did not interfere with the excellent in vivo tumor uptake of the "golden standard" [111In]In-PSMA-617, although it led to a higher kidney retention. Such kidney retention does not necessarily compromise their usefulness as radiotherapeutics due to the short tissue range of the Auger/conversion electrons emitted by 111In. Overall, our results provide valuable insights into the potential use of mitochondrial targeting by PSMA-based radiocomplexes for efficient use of AE-emitting radionuclides in TRT, giving impetus to extend the studies to other AE-emitting trivalent radiometals (e.g., 161Tb or 165Er) and to further optimize the designed dual-targeting constructs.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Antígenos de Superfície/metabolismo , Radioisótopos , Compostos Radiofarmacêuticos , Mitocôndrias/metabolismo , Linhagem Celular Tumoral
3.
Pharmaceutics ; 15(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36839886

RESUMO

Gold(III) bisdithiolate complexes have been reported as potential antimicrobial and antitumoral agents. The complex [Au(cdc)2]- (cdc=cyanodithioimido carbonate) displayed antimicrobial and outstanding antitumor activity against the ovarian cancer cells A2780 and A2780cisR, which are sensitive and resistant to cisplatin, respectively. However, poor water solubility may hamper its clinical use. Block copolymer micelles (BCMs) may solubilize hydrophobic drugs, improving their bioavailability and circulation time in blood. Aiming to provide water solubility, prolonged availability, and enhanced therapeutic indexes, BCMs loaded with [Au(cdc)2]- were synthesized and characterized. The BCM-[Au(cdc)2] micelles were prepared with a loading efficiency of 64.6% and a loading content of 35.3 mg [Au(cdc)2]-/gBCM. A hydrodynamic diameter of 77.31 ± 27.00 nm and a low polydispersity index of 0.18 indicated that the micelles were homogenous and good candidates for drug delivery. Cytotoxic activity studies against A2780/A2780cisR cells showed that BCM-[Au(cdc)2] maintained relevant cytotoxic activity comparable to the cytotoxicity observed for the same concentration of gold complexes. The Au uptake in A2780 cells, determined by PIXE, was ca. 17% higher for BCMs-[Au(cdc)2] compared to [Au(cdc)2]-. The BCMs-[Au(cdc)2] presented antimicrobial activity against S. aureus Newman and C. glabrata CBS138. These results evidenced the potential of BCM-[Au(cdc)2] for drug delivery and its promising anticancer and antimicrobial activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA