Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 10: 727, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024503

RESUMO

In the beginning of the twenty-first century, humanity faces great challenges regarding diseases and health-related quality of life. A drastic rise in bacterial antibiotic resistance, in the number of cancer patients, in the obesity epidemics and in chronic diseases due to life expectation extension are some of these challenges. The discovery of novel therapeutics is fundamental and it may come from underexplored environments, like marine habitats, and microbial origin. Actinobacteria are well-known as treasure chests for the discovery of novel natural compounds. In this study, eighteen Actinomycetales isolated from marine sponges of three Erylus genera collected in Portuguese waters were tested for bioactivities with the main goal of isolating and characterizing the responsible bioactive metabolites. The screening comprehended antimicrobial, anti-fungal, anti-parasitic, anti-cancer and anti-obesity properties. Fermentations of the selected strains were prepared using ten different culturing media. Several bioactivities against the fungus Aspergillus fumigatus, the bacteria Staphylococcus aureus methicillin-resistant (MRSA) and the human liver cancer cell line HepG2 were obtained in small volume cultures. Screening in higher volumes showed consistent anti-fungal activity by strain Dermacoccus sp. #91-17 and Micrococcus luteus Berg02-26. Gordonia sp. Berg02-22.2 showed anti-parasitic (Trypanosoma cruzi) and anti-cancer activity against several cell lines (melanoma A2058, liver HepG2, colon HT29, breast MCF7 and pancreatic MiaPaca). For the anti-obesity assay, Microbacterium foliorum #91-29 and #91-40 induced lipid reduction on the larvae of zebrafish (Danio rerio). Dereplication of the extracts from several bacteria showed the existence of a variety of secondary metabolites, with some undiscovered molecules. This work showed that Actinomycetales are indeed good candidates for drug discovery.

2.
Neurol Res ; 37(1): 23-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24965895

RESUMO

OBJECTIVES: Post-operative scarring process on lumbar surgery is object of several studies mainly because of the epidural fibrosis formation. Hybrid chitosan have shown promising effect on fibrosis prevention. The aim of this study was to determine the influence of chitosan-silane membrane on the lumbar surgery scarring process. These membranes have improved mechanical strength which makes them suitable to maintain a predefined shape. METHODS: A two level lumbar laminectomy was performed in 14 New Zealand male rabbits. Laminectomy sites were randomly selected for biomaterial or control. Chitosan membranes were prepared and care was taken in order to make it adapted to the bone defect dimensions covering the totality of the defect including the bone margins. Histological analysis was performed by haematoxylin/eosin and by Masson's trichrome staining four weeks after laminectomy. RESULTS: Microscope observations revealed the presence of a well-organized regenerating tissue, integrated in the surrounding vertebral bone tissue with a regular and all-site interface on the chitosan sites, in clear contrast with the presence of a disorganized regenerating tissue with aspects consistent with the persistence of a chronic inflammatory condition, on control sites. DISCUSSION: The results of this study clearly demonstrated that hybrid chitosan had an organizing effect on post-operative scarring process. The presence of the hybrid chitosan membrane resulted on a well-organized tissue integrated in the surrounding vertebral bone tissue with signs of regenerative bone tissue in continuity with native bone. This can be a major feature on the dynamics of epidural fibrosis formation.


Assuntos
Quitosana/uso terapêutico , Cicatriz/prevenção & controle , Implantes Experimentais , Laminectomia , Vértebras Lombares/cirurgia , Membranas Artificiais , Complicações Pós-Operatórias/prevenção & controle , Animais , Materiais Biocompatíveis/uso terapêutico , Regeneração Óssea , Cicatriz/etiologia , Vértebras Lombares/patologia , Masculino , Fenômenos Mecânicos , Coelhos , Distribuição Aleatória , Resultado do Tratamento
3.
Biomed Res Int ; 2014: 153808, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25054129

RESUMO

The treatment of peripheral nerve injuries remains one of the greatest challenges of neurosurgery, as functional recover is rarely satisfactory in these patients. Recently, biodegradable nerve guides have shown great potential for enhancing nerve regeneration. A major advantage of these nerve guides is that no foreign material remains after the device has fulfilled its task, which spares a second surgical intervention. Recently, we studied peripheral nerve regeneration using chitosan-γ-glycidoxypropyltrimethoxysilane (chitosan-GPTMS) porous hybrid membranes. In our studies, these porous membranes significantly improved nerve fiber regeneration and functional recovery in rat models of axonotmetic and neurotmetic sciatic nerve injuries. In particular, the number of regenerated myelinated nerve fibers and myelin thickness were significantly higher in rat treated with chitosan porous hybrid membranes, whether or not they were used in combination with mesenchymal stem cells isolated from the Wharton's jelly of the umbilical cord. In this review, we describe our findings on the use of chitosan-GPTMS hybrids for nerve regeneration.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Regeneração Nervosa , Siloxanas/química , Alicerces Teciduais/química , Animais , Modelos Animais de Doenças , Humanos , Células-Tronco Mesenquimais/citologia , Bainha de Mielina/química , Fibras Nervosas Mielinizadas/metabolismo , Doenças Neurodegenerativas/terapia , Porosidade , Ratos , Nervo Isquiático/patologia , Silanos/química , Cordão Umbilical/citologia
4.
J Nanosci Nanotechnol ; 9(6): 3714-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19504908

RESUMO

The use of bone grafts is required to restore skeletal integrity and enhance bone healing of large defects in several areas of regenerative medicine, such as: orthopedic and maxillofacial procedures. Some of these bone grafts can be resorbed in a time controlled way, in order to allow the correct process of natural re-construction of the involved bone tissue to occur. The Bonelike graft is a bone substitute that mimics the inorganic composition of bone; this biomaterial was developed and characterized over the last decade. In a granular form, Bonelike has proved its highly bioactive behavior in medical applications, such as; maxillofacial and orthopedics surgery. The clinical applications in maxillary bone defects indicated a good bone bonding between new formed bone and the Bonelike granules. The purpose of this study was to develop a new injectable system for the application of Bonelike using a resorbable vehicle which may be used in minimal invasive surgery. A new hydrogel derived from chitosan and y-glycidoxypropyltrimethoxysilane (GPTMS) was synthesized and characterized. The mixture derived from chitosan and GPTMS existed in sol state at room temperature and formed a hydrogel at 37 degrees C. The degradability of the hydrogel could be controlled by the concentration of chitosan and GPTMS, and the presence the presence of Bonelike did not affect its degradability. The pH changes caused by the degradation of this hydrogel were small, so it is not expected to cause any deleterious effect in vivo conditions.


Assuntos
Materiais Biocompatíveis , Osso e Ossos , Quitosana/química , Hidrogéis/síntese química , Próteses e Implantes , Silicatos/química , Hidrogéis/química , Microscopia Eletrônica de Varredura , Análise Espectral
5.
Tissue Eng Part A ; 14(6): 979-93, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18447635

RESUMO

Poly(lactic-co-glycolic acid) (PLGA) nerve tube guides, made of a novel proportion (90:10) of the two polymers, poly(L-lactide): poly(glycolide) and covered with a neural cell line differentiated in vitro, were tested in vivo for promoting nerve regeneration across a 10-mm gap of the rat sciatic nerve. Before in vivo testing, the PLGA 90:10 tubes were tested in vitro for water uptake and mass loss and compared with collagen sheets. The water uptake of the PLGA tubes was lower, and the mass loss was more rapid and higher than those of the collagen sheets when immersed in phosphate-buffered saline (PBS) solution. The pH values of immersing PBS did not change after soaking the collagen sheets and showed to be around 7.4. On the other hand, the pH values of PBS after soaking PLGA tubes decreased gradually during 10 days reaching values around 3.5. For the in vivo testing, 22 Sasco Sprague adult rats were divided into four groups--group 1: gap not reconstructed; group 2: gap reconstructed using an autologous nerve graft; group 3: gap reconstructed with PLGA 90:10 tube guides; group 4: gap reconstructed with PLGA 90:10 tube guides covered with neural cells differentiated in vitro. Motor and sensory functional recovery was evaluated throughout a healing period of 20 weeks using sciatic functional index, static sciatic index, extensor postural thrust, withdrawal reflex latency, and ankle kinematics. Stereological analysis was carried out on regenerated nerve fibers. Both motor and sensory functions improved significantly in the three experimental nerve repair groups, although the rate and extent of recovery was significantly higher in the group where the gap was reconstructed using the autologous graft. The presence of neural cells covering the inside of the PLGA tube guides did not make any difference in the functional recovery. By contrast, morphometric analysis showed that the introduction of N1E-115 cells inside PLGA 90:10 tube guides led to a significant lower number and size of regenerated nerve fibers, suggesting thus that this approach is not adequate for promoting peripheral nerve repair. Further studies are warranted to assess the role of other cellular systems as a foreseeable therapeutic strategy in peripheral nerve regeneration.


Assuntos
Diferenciação Celular , Ácido Láctico/metabolismo , Regeneração Nervosa , Neurônios/citologia , Ácido Poliglicólico/metabolismo , Nervo Isquiático/patologia , Alicerces Teciduais , Animais , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Doença dos Neurônios Motores/patologia , Doença dos Neurônios Motores/fisiopatologia , Dor/fisiopatologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/fisiopatologia , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA