Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012492

RESUMO

Prostate cancer (PCa) is the second most common cause of mortality among men. Tumor secretome is a promising strategy for understanding the biology of tumor cells and providing markers for disease progression and patient outcomes. Here, transcriptomic-based secretome analysis was performed on the PCa tumor transcriptome of Genetically Engineered Mouse Model (GEMM) Pb-Cre4/Ptenf/f mice to identify potentially secreted and membrane proteins-PSPs and PMPs. We combined a selection of transcripts from the GSE 94574 dataset and a list of protein-coding genes of the secretome and membrane proteome datasets using the Human Protein Atlas Secretome. Notably, nine deregulated PMPs and PSPs were identified in PCa (DMPK, PLN, KCNQ5, KCNQ4, MYOC, WIF1, BMP7, F3, and MUC1). We verified the gene expression patterns of Differentially Expressed Genes (DEGs) in normal and tumoral human samples using the GEPIA tool. DMPK, KCNQ4, and WIF1 targets were downregulated in PCa samples and in the GSE dataset. A significant association between shorter survival and KCNQ4, PLN, WIF1, and F3 expression was detected in the MSKCC dataset. We further identified six validated miRNAs (mmu-miR-6962-3p, mmu-miR- 6989-3p, mmu-miR-6998-3p, mmu-miR-5627-5p, mmu-miR-15a-3p, and mmu-miR-6922-3p) interactions that target MYOC, KCNQ5, MUC1, and F3. We have characterized the PCa secretome and membrane proteome and have spotted new dysregulated target candidates in PCa.


Assuntos
MicroRNAs , Neoplasias da Próstata , Animais , Biomarcadores/metabolismo , Progressão da Doença , Humanos , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteoma/genética , Proteoma/metabolismo , Secretoma
2.
Life Sci ; 293: 120264, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35031262

RESUMO

AIMS: This study evaluated the association of mucinous metaplasia (MM) with tumor cell proliferation, androgen receptor (AR) expression and invasiveness in Pten conditional knockout mice and the prognostic value of MM markers for patients with PCa. MAIN METHODS: Prostatic lobes samples from genetic engineered mouse model Ptenf/f and Pb-Cre4/Ptenf/f were submitted for histopathological analysis and tissue expression of AR, the proliferation marker Ki67, alpha-smooth muscle actin, and laminin. RNAseq data of prostatic lobes samples were analyzed searching for MM gene expression patterns. We also investigated gene and protein expression related to MM in human PCa public databases. KEY FINDINGS: All knockout animals analyzed showed at least one area of stroma-invading MM, which was absent in the control animals. The tumoral regions of MM showed a proliferative index 5 times higher than other tumoral areas and low expression of the AR (less than 20% of the cells were AR-positive). Disrupted basement membrane areas were observed in MM. The mouse and human PCa transcriptomes exhibited increased expression of the MM markers such as MUC1, MUC19, MUC4, MUC5AC, MUC5B, and TFF3. Gene expression profile was associated with castration-resistant prostate cancer (CRPC) and with a lower probability of freedom from biochemical recurrence. SIGNIFICANCE: The expression of goblet cell genes, such as MUC1, MUC5AC, MUC5B, and TFF3 have significant prognostic value for PCa patients and represent another class of potential therapeutic targets.


Assuntos
Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/deficiência , Mucinas/biossíntese , PTEN Fosfo-Hidrolase/deficiência , Neoplasias de Próstata Resistentes à Castração/metabolismo , Animais , Biomarcadores Tumorais/genética , Bases de Dados Genéticas , Masculino , Metaplasia/genética , Metaplasia/metabolismo , Metaplasia/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mucinas/genética , PTEN Fosfo-Hidrolase/genética , Prognóstico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia
3.
Antibiotics (Basel) ; 10(10)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34680783

RESUMO

The interaction between bacteriophages and integrins has been reported in different cancer cell lines, and efforts have been undertaken to understand these interactions in tumor cells along with their possible role in gene alterations, with the aim to develop new cancer therapies. Here, we report that the non-specific interaction of T4 and M13 bacteriophages with human PC-3 cells results in differential migration and varied expression of different integrins. PC-3 tumor cells (at 70% confluence) were exposed to 1 × 107 pfu/mL of either lytic T4 bacteriophage or filamentous M13 bacteriophage. After 24 h of exposure, cells were processed for a histochemical analysis, wound-healing migration assay, and gene expression profile using quantitative real-time PCR (qPCR). qPCR was performed to analyze the expression profiles of integrins ITGAV, ITGA5, ITGB1, ITGB3, and ITGB5. Our findings revealed that PC-3 cells interacted with T4 and M13 bacteriophages, with significant upregulation of ITGAV, ITGA5, ITGB3, ITGB5 genes after phage exposure. PC-3 cells also exhibited reduced migration activity when exposed to either T4 or M13 phages. These results suggest that wildtype bacteriophages interact non-specifically with PC-3 cells, thereby modulating the expression of integrin genes and affecting cell migration. Therefore, bacteriophages have future potential applications in anticancer therapies.

4.
Oxid Med Cell Longev ; 2020: 2148562, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411320

RESUMO

The incidence of prostate cancer (PCa) is increasing, and it is currently the second most frequent cause of death by cancer in men. Despite advancements in cancer therapies, new therapeutic approaches are still needed for treatment-refractory advanced metastatic PCa. Cross-species analysis presents a robust strategy for the discovery of new potential therapeutic targets. This strategy involves the integration of genomic data from genetically engineered mouse models (GEMMs) and human PCa datasets. Considering the role of antioxidant pathways in tumor initiation and progression, we searched oxidative stress-related genes for a potential therapeutic target for PCa. First, we analyzed RNA-sequencing data from Pb-Cre4; Ptenf/f mice and discovered an increase in sulfiredoxin (Srxn1) mRNA expression in high-grade prostatic intraepithelial neoplasia (PIN), well-differentiated adenocarcinoma (medium-stage tumors), and poor-differentiated adenocarcinoma (advanced-stage prostate tumors). The increase of SRXN1 protein expression was confirmed by immunohistochemistry in mouse prostate tumor paraffin samples. Analyses of human databases and prostate tissue microarrays demonstrated that SRXN1 is overexpressed in a subset of high-grade prostate tumors and correlates with aggressive PCa with worse prognosis and decreased survival. Analyses in vitro showed that SRXN1 expression is also higher in most PCa cell lines compared to normal cell lines. Furthermore, siRNA-mediated downregulation of SRXN1 led to decreased viability of PCa cells LNCaP. In conclusion, we identified the antioxidant enzyme SRXN1 as a potential therapeutic target for PCa. Our results suggest that the use of specific SRXN1 inhibitors may be an effective strategy for the adjuvant treatment of castration-resistant PCa with SRXN1 overexpression.


Assuntos
Terapia de Alvo Molecular , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Neoplasias da Próstata/patologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Gradação de Tumores , Invasividade Neoplásica , Metástase Neoplásica , Estadiamento de Neoplasias , Estresse Oxidativo/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Prognóstico , Próstata/patologia , Neoplasias da Próstata/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA