Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(10): 113254, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37858466

RESUMO

Ebola virus (EBOV) and Bundibugyo virus (BDBV) belong to the family Filoviridae and cause a severe disease in humans. We previously isolated a large panel of monoclonal antibodies from B cells of human survivors from the 2007 Uganda BDBV outbreak, 16 survivors from the 2014 EBOV outbreak in the Democratic Republic of the Congo, and one survivor from the West African 2013-2016 EBOV epidemic. Here, we demonstrate that EBOV and BDBV are capable of spreading to neighboring cells through intercellular connections in a process that depends upon actin and T cell immunoglobulin and mucin 1 protein. We quantify spread through intercellular connections by immunofluorescence microscopy and flow cytometry. One of the antibodies, BDBV223, specific to the membrane-proximal external region, induces virus accumulation at the plasma membrane. The inhibiting activity of BDBV223 depends on BST2/tetherin.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Antígeno 2 do Estroma da Médula Óssea , Ebolavirus , Doença pelo Vírus Ebola , Humanos , Antígenos CD , Antígeno 2 do Estroma da Médula Óssea/imunologia , Ebolavirus/imunologia , Proteínas Ligadas por GPI , Doença pelo Vírus Ebola/virologia
2.
Cell Host Microbe ; 27(6): 976-991.e11, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32320678

RESUMO

Marburg virus (MARV) and Ebola virus (EBOV) belong to the family Filoviridae. MARV causes severe disease in humans with high fatality. We previously isolated a large panel of monoclonal antibodies (mAbs) from B cells of a human survivor with previous naturally acquired MARV infection. Here, we characterized functional properties of these mAbs and identified non-neutralizing mAbs targeting the glycoprotein (GP) 2 portion of the mucin-like domain (MLD) of MARV GP, termed the wing region. One mAb targeting the GP2 wing, MR228, showed therapeutic protection in mice and guinea pigs infected with MARV. The protection was mediated by the Fc fragment functions of MR228. Binding of another GP2 wing-specific non-neutralizing mAb, MR235, to MARV GP increased accessibility of epitopes in the receptor-binding site (RBS) for neutralizing mAbs, resulting in enhanced virus neutralization by these mAbs. These findings highlight an important role for non-neutralizing mAbs during natural human MARV infection.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Doença do Vírus de Marburg/imunologia , Marburgvirus/imunologia , Animais , Anticorpos Monoclonais/imunologia , Linfócitos B , Chlorocebus aethiops , Modelos Animais de Doenças , Ebolavirus/imunologia , Epitopos/imunologia , Feminino , Glicoproteínas/imunologia , Cobaias , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Sobreviventes , Células THP-1 , Células Vero , Proteínas do Envelope Viral/imunologia
3.
Cell Rep ; 24(7): 1802-1815.e5, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30110637

RESUMO

Some monoclonal antibodies (mAbs) recovered from survivors of filovirus infections can protect against infection. It is currently unknown whether natural infection also induces some antibodies with the capacity for antibody-dependent enhancement (ADE). A panel of mAbs obtained from human survivors of filovirus infection caused by Ebola, Bundibugyo, or Marburg viruses was evaluated for their ability to facilitate ADE. ADE was observed readily with all mAbs examined at sub-neutralizing concentrations, and this effect was not restricted to mAbs with a particular epitope specificity, neutralizing capacity, or subclass. Blocking of specific Fcγ receptors reduced but did not abolish ADE that was associated with high-affinity binding antibodies, suggesting that lower-affinity interactions still cause ADE. Mutations of Fc fragments of an mAb that altered its interaction with Fc receptors rendered the antibody partially protective in vivo at a low dose, suggesting that ADE counteracts antibody-mediated protection and facilitates dissemination of filovirus infections.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/farmacologia , Anticorpos Facilitadores , Doença pelo Vírus Ebola/virologia , Doença do Vírus de Marburg/virologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Ebolavirus/efeitos dos fármacos , Ebolavirus/genética , Ebolavirus/imunologia , Ebolavirus/patogenicidade , Epitopos/genética , Epitopos/imunologia , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/mortalidade , Doença pelo Vírus Ebola/terapia , Humanos , Soros Imunes/química , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/genética , Doença do Vírus de Marburg/imunologia , Doença do Vírus de Marburg/mortalidade , Doença do Vírus de Marburg/terapia , Marburgvirus/efeitos dos fármacos , Marburgvirus/genética , Marburgvirus/patogenicidade , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/virologia , Cultura Primária de Células , Receptores de IgG/genética , Receptores de IgG/imunologia , Análise de Sobrevida , Sobreviventes , Células THP-1 , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
4.
PLoS Pathog ; 14(8): e1007204, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30138408

RESUMO

Recent studies suggest that some monoclonal antibodies (mAbs) specific for ebolavirus glycoprotein (GP) can protect experimental animals against infections. Most mAbs isolated from ebolavirus survivors appeared to target the glycan cap or the stalk region of the viral GP, which is the envelope protein and the only antigen inducing virus-neutralizing antibody response. Some of the mAbs were demonstrated to be protective in vivo. Here, a panel of mAbs from four individual survivors of ebolavirus infection that target the glycan cap or stem region were selected for investigation of the mechanisms of their antiviral effect. Comparative characterization of the inhibiting effects on multiple steps of viral replication was performed, including attachment, post-attachment, entry, binding at low pH, post-cleavage neutralization of virions, viral trafficking to endosomes, cell-to-cell transmission, viral egress, and inhibition when added early at various time points post-infection. In addition, Fc-domain related properties were characterized, including activation and degranulation of NK cells, antibody-dependent cellular phagocytosis and glycan content. The two groups of mAbs (glycan cap versus stem) demonstrated very different profiles of activities suggesting usage of mAbs with different epitope specificity could coordinate inhibition of multiple steps of filovirus infection through Fab- and Fc-mediated mechanisms, and provide a reliable therapeutic approach.


Assuntos
Anticorpos Antivirais/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Proteínas do Envelope Viral/antagonistas & inibidores , Anticorpos Monoclonais/imunologia , Humanos
5.
J Infect Dis ; 218(suppl_5): S327-S334, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30085081

RESUMO

A better understanding of the mechanisms used by Ebola virus to disable the host immune system and spread the infection are of great importance for development of new therapeutic strategies. We demonstrate that treatment of monocytic cells with Ebola virus shed glycoprotein (GP) promotes their differentiation resulting in increased infection and cell death. The effects were inhibited by blocking Toll-like receptor 4 pathway. In addition, high levels of shed GP were detected in supernatants of cells treated with Ebola vaccines. This study highlights the role of shed GP in Ebola pathogenesis and also in adverse effects associated with Ebola vaccines.


Assuntos
Morte Celular/fisiologia , Diferenciação Celular/fisiologia , Ebolavirus/metabolismo , Glicoproteínas/metabolismo , Monócitos/metabolismo , Receptor 4 Toll-Like/metabolismo , Morte Celular/imunologia , Diferenciação Celular/imunologia , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Monócitos/imunologia , Monócitos/fisiologia , Monócitos/virologia , Células THP-1/metabolismo , Células THP-1/fisiologia , Células THP-1/virologia , Proteínas do Envelope Viral/metabolismo
6.
PLoS Pathog ; 13(5): e1006397, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28542576

RESUMO

Fatal outcomes of Ebola virus (EBOV) infections are typically preceded by a 'sepsis-like' syndrome and lymphopenia despite T cells being resistant to Ebola infection. The mechanisms that lead to T lymphocytes death remain largely unknown; however, the degree of lymphopenia is highly correlative with fatalities. Here we investigated whether the addition of EBOV or its envelope glycoprotein (GP) to isolated primary human CD4+ T cells induced cell death. We observed a significant decrease in cell viability in a GP-dependent manner, which is suggestive of a direct role of GP in T cell death. Using immunoprecipitation assays and flow cytometry, we demonstrate that EBOV directly binds to CD4+ T cells through interaction of GP with TLR4. Transcriptome analysis revealed that the addition of EBOV to CD4+ T cells results in the significant upregulation of pathways associated with interferon signaling, pattern recognition receptors and intracellular activation of NFκB signaling pathway. Both transcriptome analysis and specific inhibitors allowed identification of apoptosis and necrosis as mechanisms associated with the observed T cell death following exposure to EBOV. The addition of the TLR4 inhibitor CLI-095 significantly reduced CD4+ T cell death induced by GP. EBOV stimulation of primary CD4+ T cells resulted in a significant increase in secreted TNFα; inhibition of TNFα-mediated signaling events significantly reduced T cell death while inhibitors of both necrosis and apoptosis similarly reduced EBOV-induced T cell death. Lastly, we show that stimulation with EBOV or GP augments monocyte maturation as determined by an overall increase in expression levels of markers of differentiation. Subsequently, the increased rates of cellular differentiation resulted in higher rates of infection further contributing to T cell death. These results demonstrate that GP directly subverts the host's immune response by increasing the susceptibility of monocytes to EBOV infection and triggering lymphopenia through direct and indirect mechanisms.


Assuntos
Linfócitos T CD4-Positivos/citologia , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/fisiopatologia , Proteínas do Envelope Viral/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Morte Celular , Células Cultivadas , Ebolavirus/genética , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno , Humanos , Ligação Proteica , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteínas do Envelope Viral/genética
7.
PLoS One ; 11(5): e0155889, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27203436

RESUMO

Powassan virus (POWV) is a tick-borne flavivirus that can result in a severe neuroinvasive disease with 50% of survivors displaying long-term neurological sequelae. Human POWV cases have been documented in Canada, the United States, and Russia. Although the number of reported POWV human cases has increased in the past fifteen years, POWV remains one of the less studied human pathogenic flaviviruses. Ixodes ticks are the vectors for POWV, and the virus is transmitted to a host's skin very early during the tick feeding process. Central to the successful transmission of a tick-borne pathogen are complex interactions between the host immune response and early tick-mediated immunomodulation, all of which initially occur at the skin interface. In our prior work, we examined the cutaneous immune gene expression during the early stages of POWV-infected Ixodes scapularis feeding. The present study serves to further investigate the skin interface by identifying early cell targets of infection at the POWV-infected tick feeding site. An in vivo infection model consisting of POWV-infected ticks feeding on mice for short durations was used in this study. Skin biopsies from the tick feeding sites were harvested at various early time points, enabling us to examine the skin histopathology and detect POWV viral antigen in immune cells present at the tick feeding site. The histopathology from the present study demonstrates that neutrophil and mononuclear cell infiltrates are recruited earlier to the feeding site of a POWV-infected tick versus an uninfected tick. This is the first report demonstrating that macrophages and fibroblasts contain POWV antigens, which suggests that they are early cellular targets of infection at the tick feeding site. These data provide key insights towards defining the complex interactions between the host immune response and early tick-mediated immunomodulation.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/virologia , Ixodes/patogenicidade , Ixodes/virologia , Pele/imunologia , Pele/virologia , Animais , Feminino , Fibroblastos/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA