Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 341: 140020, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37690569

RESUMO

As the second leading cause of death for cancer among men worldwide, prostate cancer (PCa) prevention and detection remain a critical challenge. One aspect of PCa research is the identification of common environmental agents that may increase the risk of initiation and progression of PCa. Endocrine disrupting chemicals (EDCs) are strong candidates for risk factors, partially because they alter essential pathways for prostate gland development and oncogenesis. Phthalates correspond to a set of commercially used plasticizers that humans are exposed to ubiquitously. Here, we show that maternal exposure to a phthalate mixture interferes with the expression profile of mRNA and proteins in the ventral prostate of offspring and increases the susceptibility to prostate adenocarcinomas in aged animals. The data highlight Ubxn11, Aldoc, Kif5c, Tubb4a, Tubb3, Tubb2, Rab6b and Rab3b as differentially expressed targets in young and adult offspring descendants (PND22 and PND120). These phthalate-induced targets were enriched for pathways such as: dysregulation in post-translational protein modification (PTPM), cell homeostasis, HSP90 chaperone activity, gap junctions, and kinases. In addition, the Kif5c, Tubb3, Tubb2b and Tubb4a targets were enriched for impairment in cell cycle and GTPase activity. Furthermore, these targets showed strong relationships with 12 transcriptional factors (TF), which regulate the phosphorylation of eight protein kinases. The correlation of TF-kinases is associated with alterations in immune system, RAS/ErbB/VEGF/estrogen/HIF-1 signaling pathways, cellular senescence, cell cycle, autophagy, and apoptosis. Downregulation of KIF5C, TUBB3 and RAB6B targets is associated with poor prognosis in patients diagnosed with adenocarcinoma. Collectively, this integrative investigation establishes the post-transcriptional mechanisms in the prostate that are modulated by maternal exposure to phthalate mixture during gestation and lactation.


Assuntos
Neoplasias da Próstata , Proteoma , Animais , Humanos , Masculino , Gravidez , Ratos , Biomarcadores , Lactação , Neoplasias da Próstata/induzido quimicamente , Neoplasias da Próstata/genética , Transcriptoma , Feminino , Exposição Materna/efeitos adversos
2.
J Dev Orig Health Dis ; 9(4): 361-372, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29582717

RESUMO

Well-controlled intrauterine development is an essential condition for many aspects of normal adult physiology and health. This process is disrupted by poor maternal nutrition status during pregnancy. Indeed, physiological adaptations occur in the fetus to ensure nutrient supply to the most vital organs at the expense of the others, leading to irreversible consequences in tissue formation and differentiation. Evidence indicates that maternal undernutrition in early life promotes changes in key hormones, such as glucocorticoids, growth hormones, insulin-like growth factors, estrogens and androgens, during fetal development. These alterations can directly or indirectly affect hormone release, hormone receptor expression/distribution, cellular function or tissue organization, and impair tissue growth, differentiation and maturation to exert profound long-term effects on the offspring. Within the male reproductive system, maternal protein malnutrition alters development, structure, and function of the gonads, testes and prostate gland. Consequently, these changes impair the reproductive capacity of the male offspring. Further, permanent alterations in the prostate gland occur at the molecular and cellular level and thereby affect the onset of late life diseases such as prostatitis, hyperplasia and even prostate cancer. This review assembles current thoughts on the concepts and mechanisms behind the developmental origins of health and disease as they relate to protein malnutrition, and highlights the effects of maternal protein malnutrition on rat prostate development and homeostasis. Such insights on developmental trajectories of adult-onset prostate disease may help provide a foundation for future studies in this field.


Assuntos
Doenças Fetais/etiologia , Doenças Fetais/patologia , Desnutrição/complicações , Próstata/crescimento & desenvolvimento , Doenças Prostáticas/etiologia , Doenças Prostáticas/patologia , Adulto , Animais , Feminino , Humanos , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA