Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Protein Pept Lett ; 29(12): 1088-1098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177620

RESUMO

BACKGROUND: Fungal and parasitic diseases are global health problems, and the available treatments are becoming ineffective, mainly due to the emergence of resistant strains of pathogens. Furthermore, the drugs currently in use exhibit high toxicity and side effects. The scarcity of efficient treatments for fungal and parasitic diseases has motivated the search for new drug candidates, including antimicrobial peptides. The chemokine class RP1 peptide shows inhibitory activity against bacteria, viruses, cancer cells and parasites. In addition, the organometallic compound ferrocene showed antiparasitic activity. OBJECTIVE: Study aimed to assess the effect of conjugation of the RP1 peptide with ferrocene in terms of its structure, biological activity against fungi and parasites and toxicity. METHODS: Peptides and conjugates were synthesized using solid phase peptide synthesis (SPPS). The Fc-RP1 peptide showed antifungal and antimalarial activities with low toxicity in the U87 and HepG2 cell lines. RESULTS: The mechanism of action of these peptides, analyzed by flow cytometry in the fungus Cryptococcus neoformans, was through membrane permeabilization, with an emphasis on the Fc-RP1 peptide that presented the highest rate of PI-positive cell marking. CONCLUSION: In conclusion, ferrocene conjugated to antimicrobial peptide RP1 is an attractive biomolecule for drug discovery against fungal and parasitic diseases.


Assuntos
Antimaláricos , Metalocenos/farmacologia , Antifúngicos/farmacologia , Peptídeos Antimicrobianos
2.
Molecules ; 26(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443484

RESUMO

The COVID-19 outbreak has rapidly spread on a global scale, affecting the economy and public health systems throughout the world. In recent years, peptide-based therapeutics have been widely studied and developed to treat infectious diseases, including viral infections. Herein, the antiviral effects of the lysine linked dimer des-Cys11, Lys12,Lys13-(pBthTX-I)2K ((pBthTX-I)2K)) and derivatives against SARS-CoV-2 are reported. The lead peptide (pBthTX-I)2K and derivatives showed attractive inhibitory activities against SARS-CoV-2 (EC50 = 28-65 µM) and mostly low cytotoxic effect (CC50 > 100 µM). To shed light on the mechanism of action underlying the peptides' antiviral activity, the Main Protease (Mpro) and Papain-Like protease (PLpro) inhibitory activities of the peptides were assessed. The synthetic peptides showed PLpro inhibition potencies (IC50s = 1.0-3.5 µM) and binding affinities (Kd = 0.9-7 µM) at the low micromolar range but poor inhibitory activity against Mpro (IC50 > 10 µM). The modeled binding mode of a representative peptide of the series indicated that the compound blocked the entry of the PLpro substrate toward the protease catalytic cleft. Our findings indicated that non-toxic dimeric peptides derived from the Bothropstoxin-I have attractive cellular and enzymatic inhibitory activities, thereby suggesting that they are promising prototypes for the discovery and development of new drugs against SARS-CoV-2 infection.


Assuntos
Venenos de Crotalídeos/química , Dimerização , Papaína/antagonistas & inibidores , Peptídeos/química , Peptídeos/farmacologia , SARS-CoV-2/enzimologia , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Simulação de Acoplamento Molecular , Papaína/química , Papaína/metabolismo , Peptídeos/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Conformação Proteica , SARS-CoV-2/efeitos dos fármacos
3.
Arch Oral Biol ; 103: 19-25, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31112936

RESUMO

OBJECTIVES: To evaluate the effect of analogues of cationic peptides on the viability and the expression of phenotypic and genotypic markers of dentin mineralization in MDPC-23 odontoblast-like cells. MATERIALS AND METHODS: Cells were exposed to serial dilutions of analogues of cationic peptides hBD-3-1CV and KR-12-a5 compared to peptide LL-37 and their viability was assessed by methyltetrazolium assay. Next, peptides (0.78-62.5 µg/mL) were applied on the MDPC-23 cells for evaluating the total protein (TP) production, alkaline phosphatase (ALP) activity and mineralized nodule deposition. Gene expression of mineralization markers (DSPP and DMP-1) was also determined by quantitative PCR. RESULTS: LL-37 and hBD-3-1CV treatment did not affect cellular viability at concentrations below 62.5 µg/mL. KR-12-a5 reduced cell viability above 31.25 µg/mL. TP production was similar for all groups compared with the control group, except by hBD-3-1CV (at 15.62 µg/mL). LL-37 (at 62.5 µg/mL) induced higher ALP activity than control and other experimental groups. LL-37 and hBD-3-1CV, at 62.5 µg/mL and KR-12-a5 at 31.25 µg/mL stimulated the highest deposition of mineralized nodule. Overall, no statistical differences were observed between the groups for DSPP-1 and DMP-1 expressions. CONCLUSIONS: LL-37 was the only peptide that induced both ALP activity and mineralized nodules deposition, without affecting cell viability. None of peptides tested induced the expression of DSPP or DMP-1, genes commonly involved in active dentin mineralization.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Dentinogênese , Proteínas da Matriz Extracelular , Odontoblastos , Fragmentos de Peptídeos , Fosfoproteínas , Sialoglicoproteínas , beta-Defensinas , Animais , Catelicidinas , Células Cultivadas , Dentina , Dentinogênese/genética , Proteínas da Matriz Extracelular/genética , Humanos , Camundongos , Peptídeos , Fosfoproteínas/genética , Sialoglicoproteínas/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-30498509

RESUMO

BACKGROUND: Snake venom phospholipases A2 (PLA2s) have been reported to induce myotoxic, neurotoxic, hemolytic, edematogenic, cytotoxic and proinflammatory effects. This work aimed at the isolation and functional characterization of a PLA2 isolated from Bothrops jararaca venom, named BJ-PLA2-I. METHODS AND RESULTS: For its purification, three consecutive chromatographic steps were used (Sephacryl S-200, Source 15Q and Mono Q 5/50 GL). BJ-PLA2-I showed acidic characteristics, with pI~ 4.4 and molecular mass of 14.2 kDa. Sequencing resulted in 60 amino acid residues that showed high similarity to other Bothrops PLA2s, including 100% identity with BJ-PLA2, an Asp49 PLA2 previously isolated from B. jararaca venom. Being an Asp49 PLA2, BJ-PLA2-I showed high catalytic activity, and also inhibitory effects on the ADP-induced platelet aggregation. Its inflammatory characterization showed that BJ-PLA2-I was able to promote leukocyte migration in mice at different concentrations (5, 10 and 20 µg/mL) and also at different response periods (2, 4 and 24 h), mainly by stimulating neutrophil infiltration. Furthermore, increased levels of total proteins, IL-6, IL-1ß and PGE2 were observed in the inflammatory exudate induced by BJ-PLA2-I, while nitric oxide, TNF-α, IL-10 and LTB4 levels were not significantly altered. This toxin was also evaluated for its cytotoxic potential on normal (PBMC) and tumor cell lines (HL-60 and HepG2). Overall, BJ-PLA2-I (2.5-160 µg/mL) promoted low cytotoxicity, with cell viabilities mostly varying between 70 and 80% and significant values obtained for HL-60 and PBMC only at the highest concentrations of the toxin evaluated. CONCLUSIONS: BJ-PLA2-I was characterized as an acidic Asp49 PLA2 that induces acute local inflammation and low cytotoxicity. These results should contribute to elucidate the action mechanisms of snake venom PLA2s.

5.
Peptides ; 104: 24-34, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29684590

RESUMO

Venom small peptides that target neurotrophin receptors might be beneficial in neurodegeneration, including Parkinsons disease (PD). Their small size, ease of synthesis, structural stability and target selectivity make them important tools to overcome the limitations of endogenous neurotrophins as therapeutic agents. Additionally, they might be optimized to improve resistance to enzymatic degradation, bioavailability, potency and, mainly, lipophilicity, important to cross the blood brain barrier (BBB). Here, we evaluated the neuroprotective effects and mechanisms of the synthetic snake-venom-based peptide p-BTX-I (Glu-Val-Trp) in PC12 cells treated with MPP+ (1-methyl-4-phenylpyridinium), a dopaminergic neurotoxin that induces Parkinsonism in vivo. The peptide p-BTX-I induced neuritogenesis, which was reduced by (i) k252a, antagonist of the NGF-selective receptor, trkA (tropomyosin receptor kinase A); (ii) LY294002, inhibitor of the PI3 K/AKT pathway and (iii) U0126, inhibitor of the MAPK-ERK pathway. Besides that, p-BTX-I also increased the expression of GAP-43 and synapsin, which are molecular markers of axonal growth and synaptic communication. In addition, the peptide increased the viability and differentiation of cells exposed to MPP+, known to inhibit neuritogenesis. Altogether, our findings suggest that the synthetic peptide p-BTX-I protects PC12 cells from MPP+ toxicity by a mechanism that mimics the neurotrophic action of NGF. Therefore, the molecular structure of p-BTX-I might be relevant in the development of drugs aimed at restoring the axonal connectivity in neurodegenerative processes.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Oligopeptídeos/síntese química , Oligopeptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Venenos de Serpentes/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Proteína GAP-43/metabolismo , Fator de Crescimento Neural/metabolismo , Oligopeptídeos/química , Células PC12 , Ratos , Receptor trkB/metabolismo , Sinapsinas/metabolismo
6.
J. venom. anim. toxins incl. trop. dis ; 24: 33, 2018. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-976022

RESUMO

Snake venom phospholipases A2 (PLA2s) have been reported to induce myotoxic, neurotoxic, hemolytic, edematogenic, cytotoxic and proinflammatory effects. This work aimed at the isolation and functional characterization of a PLA2 isolated from Bothrops jararaca venom, named BJ-PLA2-I. Methods and Results: For its purification, three consecutive chromatographic steps were used (Sephacryl S-200, Source 15Q and Mono Q 5/50 GL). BJ-PLA2-I showed acidic characteristics, with pI~4.4 and molecular mass of 14. 2 kDa. Sequencing resulted in 60 amino acid residues that showed high similarity to other Bothrops PLA2s, including 100% identity with BJ-PLA2, an Asp49 PLA2 previously isolated from B. jararaca venom. Being an Asp49 PLA2, BJ-PLA2-I showed high catalytic activity, and also inhibitory effects on the ADP-induced platelet aggregation. Its inflammatory characterization showed that BJ-PLA2-I was able to promote leukocyte migration in mice at different concentrations (5, 10 and 20 µg/mL) and also at different response periods (2, 4 and 24 h), mainly by stimulating neutrophil infiltration. Furthermore, increased levels of total proteins, IL-6, IL-1 ß and PGE2 were observed in the inflammatory exudate induced by BJ-PLA2-I, while nitric oxide, TNF-α, IL-10 and LTB4 levels were not significantly altered. This toxin was also evaluated for its cytotoxic potential on normal (PBMC) and tumor cell lines (HL-60 and HepG2). Overall, BJ-PLA2-I (2.5-160 µg/mL) promoted low cytotoxicity, with cell viabilities mostly varying between 70 and 80% and significant values obtained for HL-60 and PBMC only at the highest concentrations of the toxin evaluated. Conclusions: BJ-PLA2-I was characterized as an acidic Asp49 PLA2 that induces acute local inflammation and low cytotoxicity. These results should contribute to elucidate the action mechanisms of snake venom PLA2s.(AU)


Assuntos
Animais , Bothrops , Venenos de Crotalídeos/síntese química , Citotoxinas , Citotoxicidade Imunológica , Fosfolipases A2/síntese química
7.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484694

RESUMO

Abstract It is of popular and scientific knowledge that toxins from snake venom (among them the PLA2 and myotoxins) are neutralized by various compounds, such as antibodies and proteins purified from animal blood. Venomous and nonvenomous snakes have PLA2 inhibitory proteins, called PLIs, in their blood serum. One hypothesis that could explain the presence of these PLIs in the serum of venomous snakes would be self-protection against the enzymes of their own venom, which eventually could reach the circulatory system. However, the presence of PLIs in non-venomous snakes suggests that their physiological role might not be restricted to protection against PLA2 toxins, but could be extended to other functions, as in the innate immune system and local regulation of PLA2s. The present study aimed to review the currently available literature on PLA2 and myotoxin alpha inhibitors present in snake plasma, thus helping to improve the research on these molecules. Furthermore, this review includes current information regarding the mechanism of action of these inhibitors in an attempt to better understand their application, and proposes the use of these molecules as new models in snakebite therapy. These molecules may help in the neutralization of different types of phospholipases A2 and myotoxins, complementing the conventional serum therapy.

8.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-954817

RESUMO

It is of popular and scientific knowledge that toxins from snake venom (among them the PLA2 and myotoxins) are neutralized by various compounds, such as antibodies and proteins purified from animal blood. Venomous and nonvenomous snakes have PLA2 inhibitory proteins, called PLIs, in their blood serum. One hypothesis that could explain the presence of these PLIs in the serum of venomous snakes would be self-protection against the enzymes of their own venom, which eventually could reach the circulatory system. However, the presence of PLIs in non-venomous snakes suggests that their physiological role might not be restricted to protection against PLA2 toxins, but could be extended to other functions, as in the innate immune system and local regulation of PLA2s. The present study aimed to review the currently available literature on PLA2 and myotoxin alpha inhibitors present in snake plasma, thus helping to improve the research on these molecules. Furthermore, this review includes current information regarding the mechanism of action of these inhibitors in an attempt to better understand their application, and proposes the use of these molecules as new models in snakebite therapy. These molecules may help in the neutralization of different types of phospholipases A2 and myotoxins, complementing the conventional serum therapy.(AU)


Assuntos
Animais , Venenos de Serpentes , Fosfolipases A2 , Inibidores de Fosfolipase A2 , Anticorpos
9.
Protein Pept Lett ; 23(8): 738-47, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27165408

RESUMO

Due to the growing problem of antibiotic-resistant microorganisms, the development of novel antimicrobial agents is a very important challenge. Dimerization of cationic antimicrobial peptides (cAMPs) is a potential strategy for enhancing antimicrobial activity. Here, we studied the effects of magainin 2 (MG2) dimerization on its structure and biological activity. Lysine and glutamic acid were used to synthesize the C- and N-terminal dimers of MG2, respectively, in order to evaluate the impact of linker position used to obtain the dimers. Both MG2 and its dimeric versions showed a random coil structure in aqueous solution. However, in the presence of a structure-inducing solvent or a membrane mimetic, all peptides acquired helical structure. N-terminal dimerization did not affect the biological activity of the peptide. On the other hand, the C-terminal dimer, (MG2)2K, showed antimicrobial activity 8-16 times higher than that of MG2, and the time required to kill Escherichia coli was lower. The enhanced antimicrobial activity was related to membrane permeabilization. (MG2)2K was also more active against multidrug-resistant bacteria of clinical origin. Overall, the results presented here demonstrate that C-terminal lysine-linked dimerization improve the activity of MG2, and (MG2)2K can be considered as a potential antimicrobial agent.


Assuntos
Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Magaininas/química , Peptídeos/síntese química , Peptídeos/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Dicroísmo Circular , Dimerização , Escherichia coli/efeitos dos fármacos , Lisina/química , Magaininas/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos/química , Relação Estrutura-Atividade , Fatores de Tempo
10.
Biopolymers ; 106(3): 357-67, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26832983

RESUMO

The present work reports on the synthesis of a redox-tagged peptide with self-assembling capability aiming applications in electrochemically active capacitive surfaces (associated with the presence of the redox centers) generally useful in electroanalytical applications. Peptide containing ferrocene (fc) molecular (redox) group (Ac-Cys-Ile-Ile-Lys(fc)-Ile-Ile-COOH) was thus synthesized by solid phase peptide synthesis (SPPS). To obtain the electrochemically active capacitive interface, the side chain of the cysteine was covalently bound to the gold electrode (sulfur group) and the side chain of Lys was used to attach the ferrocene in the peptide chain. After obtaining the purified redox-tagged peptide, the self-assembly and redox capability was characterized by cyclic voltammetry (CV) and electrochemical impedance-based capacitance spectroscopy techniques. The obtained results confirmed that the redox-tagged peptide was successfully attached by forming an electroactive self-assembled monolayer onto gold electrode. The design of redox active self-assembly ferrocene-tagged peptide is predictably useful in the development of biosensor devices precisely to detect, in a label-free platform, those biomarkers of clinical relevance. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 357-367, 2016.


Assuntos
Técnicas Biossensoriais/métodos , Compostos Ferrosos/química , Peptídeos/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Cisteína/química , Espectroscopia Dielétrica , Eletrodos , Ouro/química , Metalocenos , Oxirredução
11.
Toxicon ; 103: 160-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26160494

RESUMO

Infectious diseases are among the leading global causes of death, increasing the search for novel antibacterial agents. Among these, biologically active peptides are an excellent research tool. Using solid-phase peptide synthesis (SPPS), this work aimed to synthesize the peptide derived from the C-terminal region of Bothropstoxin-I (BthTX-I) (p-BthTX-I, sequence: KKYRYHLKPFCKK), and its disulfide-linked dimeric form, obtained via air oxidation (p-BthTX-I)2. Two other peptides were synthesized to evaluate the dimerization effect on antimicrobial activity. In both sequences, the cysteine (Cys) residue was replaced by the serine (Ser) residue, differing, however, in their C-terminus position. The antimicrobial activity of the peptides against gram-negative (Escherichia (E.) coli) and gram-positive (Staphylococcus (S.) aureus) bacteria and yeast (Candida (C.) albicans) was evaluated. Interestingly, only peptides containing the Cys residue showed antimicrobial activity, suggesting the importance of Cys residue and its dimerization for the observed activity. Apparently, p-BthTX-I and (p-BthTX-I)2 did not promote lysis or form pores and were not able to interact with membranes. Furthermore, they neither showed antifungal activity against C. albicans nor toxicity against erythrocytes, epithelial cells, or macrophages, indicating a potential specificity against prokaryotic cells.


Assuntos
Antibacterianos/farmacologia , Venenos de Crotalídeos/farmacologia , Peptídeos/farmacologia , Antibacterianos/química , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Dicroísmo Circular , Venenos de Crotalídeos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Hemólise/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptídeos/química , Conformação Proteica , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
12.
J Pharm Biomed Anal ; 73: 35-43, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22571953

RESUMO

Phospholipases A(2) are important components of snake venoms, the basic isoforms have been more extensively studied than the acidic groups, maybe due to their higher toxicity. Trying to better understand the role of the acidic isoforms on the envenomation process, an acidic phospholipase A(2) was purified from Bothrops moojeni snake venom through two chromatographic steps (BmooPLA(2)). The enzyme showed a relative molecular mass of 13,601Da, pI 5.2, high phospholipase activity, bactericidal effect, moderate cytotoxic activity and was able to inhibit platelet aggregation. Moreover, BmooPLA(2) induced moderate in vivo edema and hypotensive effect. The 414bp cDNA encoding the BmooPLA(2) was cloned and expressed in Escherichia coli. The recombinant BmooPLA(2) showed phospholipase and inhibitory activities on platelet aggregation similar to those of the native protein. A comparative study between BmooPLA(2), the acidic (BthA-I) and basic (BthTX-II) PLA(2) from B. jararacussu venom showed that the effects of BmooPLA(2) and BthA-I-PLA(2) are similar. BmooPLA(2) is the first isolated and characterized non-myotoxic PLA(2) from B. moojeni snake venom. The recombinant PLA(2) can substitute the native toxin in studies aiming its biotechnological application in order to help the preservation of this endangered species. These data along with the preliminary structural studies here reported will provide a better understanding of this important class of proteins.


Assuntos
Anti-Hipertensivos/isolamento & purificação , Bothrops , Venenos de Crotalídeos/química , Fosfolipases A2/isolamento & purificação , Inibidores da Agregação Plaquetária/isolamento & purificação , Sequência de Aminoácidos , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Anti-Hipertensivos/farmacologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Venenos de Crotalídeos/enzimologia , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Humanos , Masculino , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Fosfolipases A2/genética , Fosfolipases A2/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Conformação Proteica , Coelhos
13.
Toxicon ; 60(7): 1251-8, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22975266

RESUMO

A fibrinogenolytic metalloproteinase from Bothrops moojeni venom, named moojenin, was purified by a combination of ion-exchange chromatography on DEAE-Sephacel and gel filtration on Sephacryl S-300. SDS-PAGE analysis indicated that moojenin consists of a single polypeptide chain and has a molecular mass about 45 kDa. Sequencing of moojenin by Edman degradation revealed the amino acid sequence LGPDIVSPPVCGNELLEVGEECDCGTPENCQNE, which showed strong identity with many other snake venom metalloproteinases (SVMPs). The enzyme cleaves the Aα-chain of fibrinogen first, followed by the Bß-chain, and shows no effects on the γ-chain. Moojenin showed a coagulant activity on bovine plasma about 3.1 fold lower than crude venom. The fibrinogenolytic and coagulant activities of the moojenin were abolished by preincubation with EDTA, 1,10-phenanthroline and ß-mercaptoethanol. Moojenin showed maximum activity at temperatures ranging from 30 to 40 °C and its optimal pH was 4.0. Its activity was completely lost at temperatures above 50 °C. Moojenin induced necrosis in liver and muscle, evidenced by morphological alterations, but did not cause histological alterations in mouse lungs, kidney or heart. Moojenin rendered the blood uncoagulatable when it was intraperitoneally administered into mice. This metalloproteinase may be of medical interest because of its anticoagulant activity.


Assuntos
Anticoagulantes/isolamento & purificação , Bothrops , Venenos de Crotalídeos/enzimologia , Metaloproteases/isolamento & purificação , Sequência de Aminoácidos , Animais , Anticoagulantes/química , Anticoagulantes/farmacologia , Venenos de Crotalídeos/química , Venenos de Crotalídeos/isolamento & purificação , Venenos de Crotalídeos/farmacologia , Masculino , Metaloproteases/química , Metaloproteases/farmacologia , Camundongos , Dados de Sequência Molecular
14.
Peptides ; 29(10): 1645-56, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18602430

RESUMO

This paper reports the purification and biochemical/pharmacological characterization of two myotoxic phospholipases A(2) (PLA(2)s) from Bothrops brazili venom, a native snake from Brazil. Both myotoxins (MTX-I and II) were purified by a single chromatographic step on a CM-Sepharose ion-exchange column up to a high purity level, showing M(r) approximately 14,000 for the monomer and 28,000Da for the dimer. The N-terminal and internal peptide amino acid sequences showed similarity with other myotoxic PLA(2)s from snake venoms, MTX-I belonging to Asp49 PLA(2) class, enzymatically active, and MTX-II to Lys49 PLA(2)s, catalytically inactive. Treatment of MTX-I with BPB and EDTA reduced drastically its PLA(2) and anticoagulant activities, corroborating the importance of residue His48 and Ca(2+) ions for the enzymatic catalysis. Both PLA(2)s induced myotoxic activity and dose-time dependent edema similar to other isolated snake venom toxins from Bothrops and Crotalus genus. The results also demonstrated that MTXs and cationic synthetic peptides derived from their 115-129 C-terminal region displayed cytotoxic activity on human T-cell leukemia (JURKAT) lines and microbicidal effects against Escherichia coli, Candida albicans and Leishmania sp. Thus, these PLA(2) proteins and C-terminal synthetic peptides present multifunctional properties that might be of interest in the development of therapeutic strategies against parasites, bacteria and cancer.


Assuntos
Bothrops/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Venenos de Crotalídeos/enzimologia , Isoenzimas/metabolismo , Peptídeos/farmacologia , Fosfolipases A2/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mapeamento de Peptídeos , Peptídeos/genética , Peptídeos/isolamento & purificação , Fosfolipases A2/genética , Fosfolipases A2/isolamento & purificação , Alinhamento de Sequência , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA