Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11228, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755187

RESUMO

Antimicrobial resistance in fungal pathogens (both human and plant) is increasing alarmingly, leading to massive economic crises. The existing anti-fungal agents are becoming ineffective, and the situation worsens on a logarithmic scale. Novel antifungals from unique natural sources are highly sought to cope sustainably with the situation. Metabolites from endophytic microbes are the best-fitted alternatives in this case. Endophytes are the untapped sources of 'plants' internal microbial population' and are promising sources of effective bio-therapeutic agents. Fungal endophytes were isolated from Tropaeolum majus and checked for antifungal activity against selected plant and human pathogens. Bioactive metabolites were identified through chromatographic techniques. The mode of action of those metabolites was evaluated through various spectroscopic techniques. The production of antifungal metabolite was optimized also. In particular VOCs (volatile organic compounds) of TML9 were tested in vitro for their anti-phytopathogenic activity. Ethyl acetate (EA) extract of cell-free culture components of Colletotrichum aenigma TML3 exhibited broad-spectrum antifungal activity against four species of Candida and the major constituents reported were 6-pentyl-2H-pyran-2-one, 2-Nonanone, 1 propanol 2-amino. The volatile metabolites, trans-ocimene, geraniol, and 4-terpinyl acetate, produced from Curvularia lunata TML9, inhibited the growth of some selected phyto pathogens. EA extract hampered the biofilm formation, minimised the haemolytic effect, and blocked the transformation of Candida albicans (MTCC 4748) from yeast to hyphal form with a Minimum Fungicidal Concentration (MFC) of 200-600 µg mL-1. Central carbohydrate metabolism, ergosterol synthesis, and membrane permeability were adversely affected and caused the lethal leakage of necessary macromolecules of C. albicans. Volatile metabolites inhibited the growth of phytopathogens i.e., Rhizoctonia solani, Alternaria alternata, Botrytis cinerea, Cercospora beticola, Penicillium digitatum, Aspergillus fumigatus, Ceratocystis ulmi, Pythium ultimum up to 89% with an IC50 value of 21.3-69.6 µL 50 mL-1 and caused leakage of soluble proteins and other intracellular molecules. Citrusy sweet odor volatiles of TML9 cultured in wheat-husk minimised the infections of Penicillium digitatum (green mold), in VOC-exposed sweet oranges (Citrus sinensis). Volatile and non-volatile antifungal metabolites of these two T. majus endophytes hold agricultural and pharmaceutical interests. Metabolites of TML3 have strong anti-Candida activity and require further assessment for therapeutic applications. Also, volatile metabolites of TML9 can be further studied as a source of antifungals. The present investigational outcomes bio-prospects the efficacy of fungal endophytes of Garden Nasturtium.


Assuntos
Antifúngicos , Endófitos , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/química , Antifúngicos/farmacologia , Antifúngicos/química , Endófitos/metabolismo , Endófitos/química , Testes de Sensibilidade Microbiana , Colletotrichum/efeitos dos fármacos , Fungos/efeitos dos fármacos , Alternaria/efeitos dos fármacos , Rhizoctonia/efeitos dos fármacos , Humanos , Candida/efeitos dos fármacos
2.
Arch Microbiol ; 205(8): 284, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438600

RESUMO

A biologically potent exopolysaccharide (EPS), Pestalopine was produced by Pestalotiopsis chamaeropsis CEL6, an endophytic fungal isolate of Chloranthus elatior Sw. Pestalopine is composed of glucose, arabinose, fucose, rhamnose, and galactose in a molar ratio of nearly 10:1:2:2:4 having an Mw ∼ 3.29 × 105 Da. Pestalopine exhibited a radical scavenging effect and significantly increased antioxidant parameters (malondialdehyde, superoxide dismutase, glutathione peroxidase, reduced glutathione oxidized glutathione) in peritoneal macrophage cells in a concentration-dependent manner, with a maximum effect at 500 mg mL-1. Pestalopine is hepatoprotective in nature and improves the liver function profiles-total bilirubin, direct bilirubin, hepatic enzymes: alkaline phosphatase, gamma-glutamyl transferase, aspartate aminotransferase, alanine transaminase of liver fibrosis induced (through thioacetamide) male Wistar rats in comparison to control. Pestalopine-fed rats are reported to have higher counts of beneficial Lactobacillus sp. Present findings suggest that Pestalopine, a novel compound may have promise as a non-toxic exogenous antioxidant with hepatoprotective and probiotic efficacies.


Assuntos
Antioxidantes , beta-Glucanas , Masculino , Animais , Ratos , Ratos Wistar , Antioxidantes/farmacologia , Pestalotiopsis , Bilirrubina , Glutationa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA